IEEE/CAA Journal of Automatica Sinica
Citation: | V. Mihaly, M. Șușcă, and P. Dobra, “Fixed-structure robust feedback linearization for full relative degree nonlinear systems,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 10, pp. 2026–2039, Oct. 2025. doi: 10.1109/JAS.2025.125354 |
[1] |
R. W. Brockett, “Feedback invariants for nonlinear systems,” IFAC Proceedings Volumes, vol. 11, no. 1, pp. 1115–1120, Jun. 1978. doi: 10.1016/S1474-6670(17)66062-2
|
[2] |
A. Isidori, Nonlinear Control Systems, 3rd Ed. London, UK: Springer, 1995.
|
[3] |
H. K. Khalil, Nonlinear Control, Global Edition, 1st Ed. Edinburgh Gate, UK: Pearson Education Limited, 2015.
|
[4] |
K. Majd, M. Razeghi-Jahromi, and A. Homaifar, “A stable analytical solution method for car-like robot trajectory tracking and optimization,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 39–47, Jan. 2020. doi: 10.1109/JAS.2019.1911816
|
[5] |
A. Isidori, “The zero dynamics of a nonlinear system: From the origin to the latest progresses of a long successful story,” European J. Control, vol. 19, no. 5, pp. 369–378, Sept. 2013. doi: 10.1016/j.ejcon.2013.05.014
|
[6] |
A. P. Aguiar, J. P. Hespanha, and P. V. Kokotovic, “Performance limitations in reference tracking and path following for nonlinear systems,” Automatica, vol. 44, pp. 598–610, Mar. 2008. doi: 10.1016/j.automatica.2007.06.030
|
[7] |
S. Jiffri, P. Paoletti, and J. E. Mottershead, “Feedback linearization in systems with nonsmooth nonlinearities,” J. Guidance, Control, and Dynamic, vol. 39, no. 4, pp. 1–12, Feb. 2016. doi: 10.2514/1.G001220
|
[8] |
W. Respondek, “Orbital feedback linearization of single-input nonlinear control systems,” IFAC Proc. Volumes, vol. 31, no. 17, pp. 483–488, Jul. 1998. doi: 10.1016/S1474-6670(17)40383-1
|
[9] |
S. J. Li and W. Respondek, “Orbital feedback linearization for multi-input control systems,” Int. J. Robust and Nonlinear Control, vol. 25, no. 9, pp. 1352–1378, Jun. 2015.
|
[10] |
D. A. Fetisov, “A-Orbital feedback linearization of multiinput control affine systems,” Int. J. Robust and Nonlinear Control, vol. 30, pp. 5602–5627, Jul. 2020. doi: 10.1002/rnc.5099
|
[11] |
D. A. Fetisov, “On some approaches to linearization of affine systems,” Proc. 11th IFAC Sympo. Nonlinear Control Systems, Vienna, Austria, 2019, pp. 700–705.
|
[12] |
J. Doyle, K. Glover, P. Khargonekar, and B. A. Francis, “State-space solutions to standard $\mathcal{H}_2$ and $\mathcal{H}_{\infty}$ control problems,” IEEE Trans. Autom Control, vol. 34, pp. 831–847, Aug. 1989. doi: 10.1109/9.29425
|
[13] |
P. Gahinet, and P. Apkarian, “A linear matrix inequality approach to $\mathcal{H}_{\infty}$ control,” Int. J. Robust and Nonlinear Control, vol. 4, pp. 421–448, Apr. 1994. doi: 10.1002/rnc.4590040403
|
[14] |
P. Apkarian, “The $\mathcal{H}_{\infty}$ control problem is solved,” in Design and Validation of Aerospace Control Systems, Aerospace Lab, Issue 13, Onera, France, 2017, pp. 1–11.
|
[15] |
A. Packard, J. Doyle, and G. Balas, “Linear multivariable robust control with a μ perspective,” J. Dyn. Syst. Measure. and Control, vol. 115, pp. 426–438, Jun. 1993. doi: 10.1115/1.2899083
|
[16] |
P. Apkarian, “Nonsmooth μ synthesis,” Int. J. Robust and Nonlinear Control, vol. 21, pp. 1493–1508, Spet. 2011. doi: 10.1002/rnc.1644
|
[17] |
S. Skogestad and I. Postlethwaite, Multivariable Feedback Control - Analysis and Design, New York, USA: John Wiley & Sons, 2005.
|
[18] |
L. B. Freidovich and H. K. Khalil, “Performance recovery of feedback-linearization-based designs,” IEEE Trans. Autom. Control, vol. 53, no. 10, pp. 2324–2334, Nov. 2008. doi: 10.1109/TAC.2008.2006821
|
[19] |
H. R. Karimi and M. R. J. Motlagh, “Robust feedback linearization control for a non linearizable MIMO Nonlinear system in the presence of model uncertainties,” in Proc. IEEE Int. Conf. Service Operations and Logistics, and Informatics, Shanghai, China, 2006, pp. 965–970.
|
[20] |
M. Kaheni, M. H. Zarif, A. A. Kalat, and L. Chisci, “Robust feedback linearization for input-constrained nonlinear systems with matched uncertainties,” in Proc. European Control Conf., Limassol, Cyprus, 2018, pp. 2947–2952.
|
[21] |
M. Kaheni, M. H. Zarif, A. A. Kalat, and L. Chisci, “Radial pole path approach for fast response of affine constrained nonlinear systems with matched uncertainties,” Int. J. Robust and Nonlinear Control, vol. 30, pp. 142–158, Oct. 2019. doi: 10.1002/rnc.4757
|
[22] |
N. Wang and B. Kiss, “A Method to Robustify Exact Linearization Against Parameter Uncertainty,” Int. J. Control, Autom. and Systems, vol. 17, pp. 1–11, Jan. 2019. doi: 10.1007/s12555-017-0703-0
|
[23] |
W. Yin, L. Sun, M. Wang, and J. Liu, “Position control of a series elastic actuator based on global sliding mode controller design,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 3, pp. 850–858, Mar. 2019. doi: 10.1109/JAS.2019.1911498
|
[24] |
Y. Wu, A. Isidori, R. Lu, and H. K. Khalil, “Performance recovery of dynamic feedback-linearization methods for multivariable nonlinear systems,” IEEE Trans. Autom. Control, vol. 65, no. 4, pp. 1365–1380, Apr. 2020. doi: 10.1109/TAC.2019.2924176
|
[25] |
T. Westenbroek, D. Fridovich-Keil, E. Mazumdar, S. Arora, V. Prabhu, S. S. Sastry, and C. J. Tomlin, “Feedback linearization for uncertain systems via reinforcement learning,” in Proc. IEEE Int. Conf. Robotics and Automation, Paris, France, 2020, pp. 1364–1371.
|
[26] |
R. G. Goswami, P. Krishnamurthy, and F. Khorrami, “Data-driven deep learning based feedback linearization of systems with unknown dynamics,” in Proc. American Control Conf, San Diego, USA, 2023, pp. 66–71.
|
[27] |
A. Nicoletti and A. Karimi, “Robust controller design for linear systems with nonlinear distortions. A Data-Driven Approach,” in Proc. European Control Conf., Limassol, Cyprus, 2018, pp. 1–6.
|
[28] |
H. Oersted and Y. Ma, Geometric and Feedback Linearization on UAV: Review, arXiv preprint arXiv 2311.06774, 2023.
|
[29] |
M. Hajaya and T. Shaqarin, “Control of a benchmark CSTR using feedback linearization,” Jordanian J. Engineering and Chemical Industries, vol. 2, no. 3, pp. 67–75, Mar. 2019.
|
[30] |
Z. Shulong, A. Honglei, Z. Daibing, and S. Lincheng, “A new feedback linearization LQR control for attitude of quadrotor,” in Proc. 13th Int. Conf. Control, Automation, Robotics & Vision, Singapore, 2014, pp. 1593–1597.
|
[31] |
C. Lascu, I. Boldea, and F. Blaabjerg, “Direct torque control via feedback linearization for permanent magnet synchronous motor drives,” in Proc. 13th Int. Conf. Optimization of Electrical and Electronic Equipment, 2012, pp. 338–343.
|
[32] |
M. Rokonuzzaman, N. Mohajer, S. Nahavandi, and S. Mohamed, “Review and performance evaluation of path tracking controllers of autonomous vehicles,” IET Intelligent Transport Syst., vol. 15, pp. 646–670, Mar. 2021. doi: 10.1049/itr2.12051
|
[33] |
K. Poolla, P. Khargonekar, A. Tikku, J. Krause, and K. Nagpal, “A time-domain approach to model validation,” IEEE Trans. Autom. Control, vol. 39, no. 5, pp. 951–959, May 1994. doi: 10.1109/9.284871
|
[34] |
G. Balas, R. Chiang, A. Packard, and M. Safonov, Robust Control ToolboxTM Reference, Version 6.11.2 (R2022b), Sept. 2022. [Online], Available: https://www.mathworks.com/help/pdf_doc/robust/robust_ug.pdf.
|
[35] |
M. Șușcă, V. Mihaly, and P. Dobra, “Nonconvex valid uncertainty modelling approach for robust control synthesis,” in Proc. 27th Int. Conf. System Theory, Control and Computing, Timișoara, Romania, 2023, pp.269–276.
|
[36] |
M. Șușcă, V. Mihaly, M. Stănese, and P. Dobra, “Uncertainty modelling of mechanical systems with derivative behaviour for robust control synthesis,” in Proc. European Control Conf., Bucharest, Romania, 2023, pp. 1–7.
|