IEEE/CAA Journal of Automatica Sinica
Citation: | J. Zhao, L. Zhou, W. Gao, H. Wang, and C. Yang, “Model-free coordinated optimal regulation for rigidly connected dual-PMSM systems via adaptive dynamic programming,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 10, pp. 2138–2149, Oct. 2025. doi: 10.1109/JAS.2025.125207 |
[1] |
T. Li, X. Sun, G. Lei, Y. Guo, Z. Yang, and J. Zhu, “Finite-control-set model predictive control of permanent magnet synchronous motor drive systems—An overview,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 12, pp. 2087–2105, Dec. 2022. doi: 10.1109/JAS.2022.105851
|
[2] |
M. Wang, X. Ren, and Q. Chen, “Cascade optimal control for tracking and synchronization of a multimotor driving system,” IEEE Trans. Control Syst. Technol., vol. 27, no. 3, pp. 1376–1384, May 2019. doi: 10.1109/TCST.2018.2810273
|
[3] |
Q. Geng, Z. Li, Y. Ju, J. Feng, X. Li, Z. Zhou, and T. Shi, “An improved PWM method of five-leg VSI fed dual-PMSM system with duty cycles regulation,” IEEE/ASME Trans. Mechatronics, vol. 27, no. 6, pp. 5771–5779, Dec. 2022. doi: 10.1109/TMECH.2022.3190690
|
[4] |
Y.-S. Lim, J.-S. Lee, and K.-B. Lee, “Advanced speed control for a five-leg inverter driving a dual-induction motor system,” IEEE Trans. Ind. Electron., vol. 66, no. 1, pp. 707–716, Jan. 2019. doi: 10.1109/TIE.2018.2831172
|
[5] |
B. Wang, M. Iwasaki, and J. Yu, “Command filtered adaptive backstepping control for dual-motor servo systems with torque disturbance and uncertainties,” IEEE Trans. Ind. Electron., vol. 69, no. 2, pp. 1773–1781, Feb. 2022. doi: 10.1109/TIE.2021.3059540
|
[6] |
R. Krishnan, Electric Motor Drives: Modeling, Analysis, and Control. Upper Saddle River, NJ, USA: Prentice-Hall, 2001.
|
[7] |
J. Yang, W.-H. Chen, S. Li, L. Guo, and Y. Yan, “Disturbance/uncertainty estimation and attenuation techniques in PMSM drives—A survey,” IEEE Trans. Ind. Electron., vol. 64, no. 4, pp. 3273–3285, Apr. 2017. doi: 10.1109/TIE.2016.2583412
|
[8] |
A. Apte, U. Thakar, and V. Joshi, “Disturbance observer based speed control of PMSM using fractional order PI controller,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 316–326, Jan. 2019. doi: 10.1109/JAS.2019.1911354
|
[9] |
J. Liu, J. Yang, S. Li, and X. Wang, “Single-loop robust model predictive speed regulation of PMSM based on exogenous signal preview,” IEEE Trans. Ind. Electron., vol. 70, no. 12, pp. 12719–12729, Dec. 2023. doi: 10.1109/TIE.2023.3239938
|
[10] |
J. Song, Y.-K. Wang, Y. Niu, H.-K. Lam, S. He, and H. Liu, “Periodic event-triggered terminal sliding mode speed control for networked PMSM system: A GA-optimized extended state observer approach,” IEEE/ASME Trans. Mechatronics, vol. 27, no. 5, pp. 4153–4164, Oct. 2022. doi: 10.1109/TMECH.2022.3148541
|
[11] |
S. Li and H. Gu, “Fuzzy adaptive internal model control schemes for PMSM speed-regulation system,” IEEE Trans. Ind. Informat., vol. 8, no. 4, pp. 767–779, Nov. 2012. doi: 10.1109/TII.2012.2205581
|
[12] |
J. Huang, Nonlinear Output Regulation: Theory and Applications. Philadelphia, PA, USA: SIAM, 2004.
|
[13] |
Z. Ping and J. Huang, “Speed tracking control of surface-mounted permanent-magnet synchronous motor with unknown exosystem,” Int. J. Robust Nonlinear Control, vol. 25, no. 8, pp. 1247–1264, May 2015. doi: 10.1002/rnc.3140
|
[14] |
Z. Ping, T. Wang, Y. Huang, H. Wang, J.-G. Lu, and Y. Li, “Internal model control of PMSM position servo system: Theory and experimental results,” IEEE Trans. Ind. Informat., vol. 16, no. 4, pp. 2202–2211, Apr. 2020. doi: 10.1109/TII.2019.2935248
|
[15] |
F. F. M. El-Sousy, M. M. Amin, and A. Al-Durra, “Adaptive optimal tracking control via actor-critic-identifier based adaptive dynamic programming for permanent-magnet synchronous motor drive system,” IEEE Trans. Ind. Appl., vol. 57, no. 6, pp. 6577−6591, Nov.−Dec. 2021.
|
[16] |
J. Zhao, C. Yang, W. Gao, and L. Zhou, “Reinforcement learning and optimal control of PMSM speed servo system,” IEEE Trans. Ind. Electron., vol. 70, no. 8, pp. 8305–8313, Aug. 2023. doi: 10.1109/TIE.2022.3220886
|
[17] |
D. Liu, S. Xue, B. Zhao, B. Luo, and Q. Wei, “Adaptive dynamic programming for control: A survey and recent advances,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 51, no. 1, pp. 142–160, Jan. 2021. doi: 10.1109/TSMC.2020.3042876
|
[18] |
D. Wang, N. Gao, D. Liu, J. Li, and F. L. Lewis, “Recent progress in reinforcement learning and adaptive dynamic programming for advanced control applications,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 1, pp. 18–36, Jan. 2024. doi: 10.1109/JAS.2023.123843
|
[19] |
W. Gao, C. Deng, Y. Jiang, and Z.-P. Jiang, “Resilient reinforcement learning and robust output regulation under denial-of-service attacks,” Automatica, vol. 142, p. 110366, 2022. doi: 10.1016/j.automatica.2022.110366
|
[20] |
W. Gao, M. Mynuddin, D. C. Wunsch, and Z.-P. Jiang, “Reinforcement learning-based cooperative optimal output regulation via distributed adaptive internal model,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 10, pp. 5229–5240, Oct. 2022. doi: 10.1109/TNNLS.2021.3069728
|
[21] |
D. Wang, M. Ha, and J. Qiao, “Data-driven iterative adaptive critic control toward an urban wastewater treatment plant,” IEEE Trans. Ind. Electron., vol. 68, no. 8, pp. 7362–7369, Aug. 2021. doi: 10.1109/TIE.2020.3001840
|
[22] |
Y. Yang, Z. Ding, R. Wang, H. Modares, and D. C. Wunsch, “Data-driven human-robot interaction without velocity measurement using off-policy reinforcement learning,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 1, pp. 47–63, Jan. 2022. doi: 10.1109/JAS.2021.1004258
|
[23] |
S. A. A. Rizvi, A. J. Pertzborn, and Z. Lin, “Development of a bias compensating Q-learning controller for a multi-zone HVAC facility,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 8, pp. 1704–1715, Aug. 2023. doi: 10.1109/JAS.2023.123624
|
[24] |
Q. Wei, Z. Liao, R. Song, P. Zhang, Z. Wang, and J. Xiao, “Self-learning optimal control for ice-storage air conditioning systems via data-based adaptive dynamic programming,” IEEE Trans. Ind. Electron., vol. 68, no. 4, pp. 3599–3608, Apr. 2021. doi: 10.1109/TIE.2020.2978699
|
[25] |
J. Zhao, C. Yang, W. Dai, and W. Gao, “Reinforcement learning-based composite optimal operational control of industrial systems with multiple unit devices,” IEEE Trans. Ind. Informat., vol. 18, no. 2, pp. 1091–1101, Feb. 2022. doi: 10.1109/TII.2021.3076471
|
[26] |
S. Li, H. Won, X. Fu, M. Fairbank, D. C. Wunsch, and E. Alonso, “Neural-network vector controller for permanent-magnet synchronous motor drives: Simulated and hardware-validated results,” IEEE Trans. Cybern., vol. 50, no. 7, pp. 3218–3230, Jul. 2020. doi: 10.1109/TCYB.2019.2897653
|
[27] |
Z.-X. Fan, S. Li, and R. Liu, “ADP-based optimal control for systems with mismatched disturbances: A PMSM application,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 70, no. 6, pp. 2057–2061, Jun. 2023.
|
[28] |
A. G. Khiabani and A. Heydari, “Optimal torque control of permanent magnet synchronous motors using adaptive dynamic programming,” IET Power Electron., vol. 13, no. 12, pp. 2442–2449, Sept. 2020. doi: 10.1049/iet-pel.2019.1339
|
[29] |
L. N. Tan and T. C. Pham, “Optimal tracking control for PMSM with partially unknown dynamics, saturation voltages, torque, and voltage disturbances,” IEEE Trans. Ind. Electron., vol. 69, no. 4, pp. 3481–3491, Apr. 2022. doi: 10.1109/TIE.2021.3075892
|
[30] |
L. N. Tan, T. P. Cong, and D. P. Cong, “Neural network observers and sensorless robust optimal control for partially unknown PMSM with disturbances and saturating voltages,” IEEE Trans. Power Electron., vol. 36, no. 10, pp. 12045–12056, Oct. 2021. doi: 10.1109/TPEL.2021.3071465
|
[31] |
J. Zhao, C. Yang, and W. Gao, “Reinforcement learning based optimal control of linear singularly perturbed systems,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 69, no. 3, pp. 1362–1366, Mar. 2022.
|
[32] |
Y. Lei, Y.-W. Wang, X.-K. Liu, and W. Yang, “Prescribed-time stabilization of singularly perturbed systems,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 2, pp. 569–571, Feb. 2023. doi: 10.1109/JAS.2023.123246
|
[33] |
P. V. Kokotovic, H. K. Khalil, and J. O'Reilly, Singular Perturbation Methods in Control: Analysis and Design. Philadelphia, PA, USA: SIAM, 1999.
|
[34] |
C. Yang, F. Meng, H. Zhang, J. Zhao, H. Wang, and L. Zhou, “Optimal coordinated control for speed tracking and torque synchronization of rigidly connected dual-motor systems,” IEEE/ASME Trans. Mechatronics, vol. 28, no. 5, pp. 2609–2620, Oct. 2023. doi: 10.1109/TMECH.2023.3242663
|
[35] |
G. A. Christopoulos, A. N. Safacas, and A. Zafiris, “Energy savings and operation improvement of rotating cement kiln by the implementation of a unique new drive system,” IET Electr. Power Appl., vol. 10, no. 2, pp. 101–109, Feb. 2016. doi: 10.1049/iet-epa.2015.0063
|
[36] |
D. Kleinman, “On an iterative technique for Riccati equation computations,” IEEE Trans. Autom. Control, vol. AC-13, no. 1, pp. 114–115, Feb. 1968.
|
[37] |
S. Mukherjee, H. Bai, and A. Chakrabortty, “Reduced-dimensional reinforcement learning control using singular perturbation approximations,” Automatica, vol. 126, p. 109451, 2021. doi: 10.1016/j.automatica.2020.109451
|
[38] |
H. L. Trentelman, H. J. van Waarde, and M. K. Camlibel, “An informativity approach to the data-driven algebraic regulator problem,” IEEE Trans. Autom. Control, vol. 67, no. 11, pp. 6227–6233, Nov. 2022. doi: 10.1109/TAC.2021.3129457
|
[39] |
T. H. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms. Cambridge, MA, USA: MIT Press, 2009.
|