IEEE/CAA Journal of Automatica Sinica
Citation: | C. Cun, Q. Yang, Z. Li, M. C. Zhou, and J. Pang, “Model predictive optimization and control of quadruped whole-body locomotion,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 10, pp. 2103–2114, Oct. 2025. doi: 10.1109/JAS.2024.125073 |
[1] |
I. D. Miller, F. Cladera, A. Cowley, et al., “Mine tunnel exploration using multiple quadrupedal robots,” IEEE Robotics and Autom. Lett., vol. 5, no. 2, pp. 2840–2847, Apr. 2020. doi: 10.1109/LRA.2020.2972872
|
[2] |
J. Hooks, M. Ahn, J. Yu, X. Zhang, T. Zhu, H. Chae, and D. Hong, “ALPHRED: A multi-modal operations quadruped robot for package delivery applications,” IEEE Robotics and Autom. Lett., vol. 5, no. 4, pp. 5409–5416, Oct. 2020. doi: 10.1109/LRA.2020.3007482
|
[3] |
S. Zhang, M. Liu, Y. Yin, X. Rong, Y. Li, and Z. Hua, “Static gait planning method for quadruped robot walking on unknown rough terrain,” IEEE Access, vol. 7, pp. 177651–177660, 2019. doi: 10.1109/ACCESS.2019.2958320
|
[4] |
S. Fahmi, C. Mastalli, M. Focchi, and C. Semini, “Passive whole-body control for quadruped robots: Experimental validation over challenging terrain,” IEEE Robotics and Autom. Lett., vol. 4, no. 3, pp. 2553–2560, July 2019. doi: 10.1109/LRA.2019.2908502
|
[5] |
M. Lorenzini, W. Kim, E. De Momi, and A. Ajoudani, “A synergistic approach to the real-time estimation of the feet ground reaction forces and centers of pressure in humans with application to human–robot collaboration,” IEEE Robotics and Autom. Lett., vol. 3, no. 4, pp. 3654–3661, Oct. 2018. doi: 10.1109/LRA.2018.2855802
|
[6] |
J.-L. Sung, L.-Y. Guo, C.-H. Liu, P. Lee, C.-W. Yen, and L.-J. Liaw, “Characterizing human postural stability by using features extracted from the correlation structure of ground reaction force components,” IEEE Access, vol. 9, pp. 77398–77406, 2021. doi: 10.1109/ACCESS.2021.3080705
|
[7] |
V. Azimi, T. T. Nguyen, M. Sharifi, S. A. Fakoorian, and D. Simon, “Robust ground reaction force estimation and control of lower-limb prostheses: Theory and simulation,” IEEE Trans. Systems, Man, and Cybern.: Systems, vol. 50, no. 8, pp. 3024–3035, Aug. 2020.
|
[8] |
H. Ma and W.-H. Liao, “Human gait modeling and analysis using a semi-markov process with ground reaction forces,” IEEE Trans. Neural Systems and Rehabilitation Engineering, vol. 25, no. 6, pp. 597–607, Jun. 2017. doi: 10.1109/TNSRE.2016.2584923
|
[9] |
L. B. McMillan, T. Di Pauli Von Treuheim, A. Murphy, A. Zengin, P. R. Ebeling, and D. Scott, “Development and validation of a wearable plantar force measurement device,” IEEE Sensors J., vol. 19, no. 11, pp. 4008–4016, 1 June1, 2019.
|
[10] |
K. A. Hamed, J. Kim, and A. Pandala, “Quadrupedal locomotion via event-based predictive control and QP-based virtual constraints,” IEEE Robotics and Autom. Lett., vol. 5, no. 3, pp. 4463–4470, Jul. 2020. doi: 10.1109/LRA.2020.3001471
|
[11] |
A. Meshginqalam and J. Bauman, “Two-level MPC speed profile optimization of autonomous electric vehicles considering detailed internal and external losses,” IEEE Access, vol. 8, pp. 206559–206570, 2020. doi: 10.1109/ACCESS.2020.3038050
|
[12] |
H. D. Tuan, A. A. Nasir, A. V. Savkin, H. V. Poor, and E. Dutkiewicz, “MPC-based UAV navigation for simultaneous solar-energy harvesting and two-way communications,” IEEE J. Selected Areas in Communi., vol. 39, no. 11, pp. 3459–3474, Nov. 2021. doi: 10.1109/JSAC.2021.3088633
|
[13] |
S. Xu, L. Zhu, H.-T. Zhang, and C. P. Ho, “Robust convex model predictive control for quadruped locomotion under uncertainties,” IEEE Trans. Robotics, vol. 39, no. 6, pp. 4837–4854, Dec. 2023. doi: 10.1109/TRO.2023.3299527
|
[14] |
M. Sombolestan and Q. Nguyen, “Adaptive-force-based control of dynamic legged locomotion over uneven terrain,” IEEE Trans. Robotics, vol. 40, pp. 2462–2477, 2024. doi: 10.1109/TRO.2024.3381554
|
[15] |
G. Bledt, “Regularized predictive control framework for robust dynamic legged locomotion,” Ph.D. dissertation, Massachusetts Institute of Technology,Cambridge, USA, 2020.
|
[16] |
G. Bledt, “Policy regularized model predictive control framework for robust legged locomotion,” S.M. thesis, Massachusetts Institute of Technology, Cambridge, USA, 2018
|
[17] |
D. Kim, J. D. Carlo, B. Katz, G. Bledt, and S. Kim, “Highly dynamic quadruped locomotion via whole-body impulse control and model predictive control,” ArXiv preprint ArXiv, 2019.
|
[18] |
J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim, “Dynamic locomotion in the MIT cheetah 3 through convex model-predictive control,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2018, pp. 1–9.
|
[19] |
B. Katz, J. D. Carlo and S. Kim, “Mini Cheetah: A platform for pushing the limits of dynamic quadruped control,” in Proc. Int. Conf. Robotics and Automation, 2019, pp. 6295–6301.
|
[20] |
S. East and M. Cannon, “Energy management in plug-in hybrid electric vehicles: Convex optimization algorithms for model predictive control,” IEEE Trans. Control Systems Tech., vol. 28, no. 6, pp. 2191–2203, Nov. 2020. doi: 10.1109/TCST.2019.2933793
|
[21] |
Z. Wang, G. Li, H. Jiang, Q. Chen, and H. Zhang, “Collision-free navigation of autonomous vehicles using convex quadratic programming-based model predictive control,” IEEE/ASME Trans. Mechatronics, vol. 23, no. 3, pp. 1103–1113, Jun. 2018. doi: 10.1109/TMECH.2018.2816963
|
[22] |
B. Henze, M. A. Roa, and C. Ott, “Passivity-based whole-body balancing for torque-controlled humanoid robots in multi-contact scenarios,” The Int. J. Robotics Research, vol. 35, no. 12, pp. 1522–1543, 2016. doi: 10.1177/0278364916653815
|
[23] |
F. Farshidian, E. Jelavić, A. W. Winkler, and J. Buchli, “Robust whole-body motion control of legged robots,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2017, pp. 4589–4596.
|
[24] |
B. Henze, A. Dietrich, M. A. Roa, and C. Ott, “Multi-contact balancing of humanoid robots in confined spaces: Utilizing knee contacts,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2017, pp. 697–704.
|
[25] |
K. Bouyarmane, K. Chappellet, J. Vaillant, and A. Kheddar, “Quadratic programming for multirobot and task-space force control,” IEEE Trans. Robotics, vol. 35, no. 1, pp. 64–77, Feb. 2019. doi: 10.1109/TRO.2018.2876782
|
[26] |
V. Ortenzi, R. Stolkin, J. Kuo, and M. Mistry, “Hybrid motion/force control: A review,” Advanced Robotics, vol. 31, pp. 1102–1113, 2017. doi: 10.1080/01691864.2017.1364168
|
[27] |
N. Wang, C. Chen, and A. D. Nuovo, “A framework of hybrid force/motion skills learning for robots,” IEEE Trans. Cognitive and Developmental Systems, vol. 13, no. 1, pp. 162–170, Mar. 2021. doi: 10.1109/TCDS.2020.2968056
|
[28] |
Z. Li, Y. Xia, D. Wang, D. Zhai, C. Su, and X. Zhao, “Neural network-based control of networked trilateral teleoperation with geometrically unknown constraints,” IEEE Trans. Cybern., vol. 46, no. 5, pp. 1051–1064, May 2016. doi: 10.1109/TCYB.2015.2422785
|
[29] |
T. Zhao, Y. Liu, Z. Li, C. Su, and Y. Feng, “Adaptive control and optimization of mobile manipulation subject to input saturation and switching constraints,” IEEE Trans. Autom. Science and Eng., vol. 16, no. 4, pp. 1543–1555, Oct. 2019. doi: 10.1109/TASE.2018.2883343
|
[30] |
M. Sombolestan, Y. Chen, and Q. Nguyen, “Adaptive force-based control for legged robots,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Prague, Czech Republic, 2021, pp. 7440–7447.
|
[31] |
C. Ott, M. A. Roa, and G. Hirzinger, “Posture and balance control for biped robots based on contact force optimization,” in Proc. 11th IEEE/RAS Int. Conf. Humanoid Robots, 2011, pp. 26–33.
|
[32] |
B. Henze, C. Ott, and M. Roa, “Posture and balance control for humanoid robots in multi-contact scenarios based on model predictive control,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2014, pp. 3253–3258.
|
[33] |
G. Bledt, M. J. Powell, B. Katz, J. Di Carlo, P. M. Wensing, and S. Kim, “MIT cheetah 3: Design and control of a robust, dynamic quadruped robot,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Madrid, Spain, 2018, pp. 2245–2252.
|
[34] |
Z. Li, S. Yu, and S. Liu, “Dynamical balance optimization and control of quadruped robots under perturbing external force,” IFAC Proceedings Volumes, vol. 46, no. 20, pp. 199–205, 2013.
|
[35] |
Q. Li, W. Qi, Z. Li, H. Xia, Y. Kang, and L. Cheng, “Fuzzy-based optimization and control of a soft exosuit for compliant robot-human-environment interaction,” IEEE Trans. Fuzzy Systems, vol. 31, no. 1, pp. 241–253, Jan. 2022.
|
[36] |
D. Yao, L. Yang, X. Xiao, and M. Zhou, “Velocity-based gait planning for underactuated bipedal robot on uneven and compliant terrain,” IEEE Trans. Industrial Electronics, vol. 69, no. 11, pp. 11414–11424, Nov. 2022. doi: 10.1109/TIE.2021.3125671
|
[37] |
R. Wu, Z. Yao, J. Si, and H. H. Huang, “Robotic knee tracking control to mimic the intact human knee profile based on actor-critic reinforcement learning,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 1, pp. 19–30, Jan. 2022. doi: 10.1109/JAS.2021.1004272
|
[38] |
H. Bao, Q. Kang, X. Shi, M. Zhou, H. Li, J. An, and K. Sedraoui, “Moment-based model predictive control of autonomous systems,” IEEE Trans. Intelligent Vehicle, vol. 8, no. 4, pp. 2939–2953, Apr. 2023.
|
[39] |
H. Bao, Q. Kang, X. Shi, M. Zhou, J. An, and Y. Al-Turki, “Value approximator-based learning model predictive control for iterative tasks,” IEEE Trans. Autom. Control, vol. 69, no. 10, pp. 7020–7027, Oct. 2024.
|
[40] |
F. Zhang, M. Zhou, and L. Qi, “Distributed and coordinated model predictive control for channel resource allocation in cooperative vehicle safety systems,” IEEE Internet of Things J., vol. 11, no. 11, pp. 19328–19343, Jun. 2024.
|
[41] |
C. Gu, X. Wang, K. Li, X. Yin, S. Li, and L. Wang, “Enhanced tube-based event-triggered stochastic model predictive control with additive uncertainties,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 3, pp. 596–605, Mar. 2025. doi: 10.1109/JAS.2024.124974
|