IEEE/CAA Journal of Automatica Sinica
Citation: | G. Lyu, Z. Peng, and J. Wang, “Safety-certified parallel model predictive control of autonomous surface vehicles via neurodynamic optimization,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 10, pp. 2056–2066, Oct. 2025. doi: 10.1109/JAS.2024.124980 |
[1] |
J. Li, G. Zhang, C. Jiang, and W. Zhang, “A survey of maritime unmanned search system: Theory, applications and future directions,” Ocean Engineering, vol. 285, p. 115359, Oct. 2023. doi: 10.1016/j.oceaneng.2023.115359
|
[2] |
C. Wang, Y. Wang, Q.-L. Han, and Y. Wu, “MUTS-based cooperative target stalking for a multi-USV system,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 7, pp. 1582–1592, Jul. 2023. doi: 10.1109/JAS.2022.106007
|
[3] |
H. Qin, C. Li, Y. Sun, X. Li, Y. Du, and Z. Deng, “Finite-time trajectory tracking control of unmanned surface vessel with error constraints and input saturations,” J. Franklin Institute, vol. 357, no. 16, pp. 11472–11495, Nov. 2020. doi: 10.1016/j.jfranklin.2019.07.019
|
[4] |
J. Li, X. Xiang, Q. Zhang, and S. Yang, “Robust practical prescribed time trajectory tracking of USV with guaranteed performance,” Ocean Engineering, vol. 302, p. 117622, Jun. 2024. doi: 10.1016/j.oceaneng.2024.117622
|
[5] |
L. Ma, Y.-L. Wang, and Q.-L. Han, “Cooperative target tracking of multiple autonomous surface vehicles under switching interaction topologies,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 3, pp. 673–684, Mar. 2023. doi: 10.1109/JAS.2022.105509
|
[6] |
J. Li, X. Xiang, D. Dong, and S. Yang, “Saturated-command-deviation based finite-time adaptive control for dynamic positioning of USV with prescribed performance,” Ocean Engineering, vol. 266, p. 112941, Nov. 2022. doi: 10.1016/j.oceaneng.2022.112941
|
[7] |
Y. Wang, Q.-L. Han, M.-R. Fei, and C. Peng, “Network-based T-S fuzzy dynamic positioning controller design for unmanned marine vehicles,” IEEE Trans. Cybernetics, vol. 48, no. 9, pp. 2750–2763, Sept. 2018. doi: 10.1109/TCYB.2018.2829730
|
[8] |
L.-Y. Hao, Z.-J. Wu, C. Shen, Y. Cao, and R.-Z. Wang, “Tube-based model predictive control for constrained unmanned marine vehicles with thruster faults,” IEEE Trans. Industrial Informatics, vol. 20, no. 3, pp. 4606–4615, Mar. 2024. doi: 10.1109/TII.2023.3326543
|
[9] |
Z. Zheng, L. Sun, and L. Xie, “Error-constrained LOS path following of a surface vessel with actuator saturation and faults,” IEEE Trans. Systems, Man, and Cybernetics: Systems, vol. 48, no. 10, pp. 1794–1805, Oct. 2018. doi: 10.1109/TSMC.2017.2717850
|
[10] |
L.-Y. Hao, G. Dong, T. Li, and Z. Peng, “Path-following control with obstacle avoidance of autonomous surface vehicles subject to actuator faults,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 4, pp. 956–964, Apr. 2024. doi: 10.1109/JAS.2023.123675
|
[11] |
Z. Peng, C. Wang, Y. Yin, and J. Wang, “Safety-certified constrained control of maritime autonomous surface ships for automatic berthing,” IEEE Trans. Vehicular Technology, vol. 72, no. 7, pp. 8541–8552, 2023. doi: 10.1109/TVT.2023.3253204
|
[12] |
X. Jiang, G. Xia, Z. Feng, and Z.-G. Wu, “Nonfragile formation seeking of unmanned surface vehicles: a sliding mode control approach,” IEEE Trans. Network Science and Engineering, vol. 9, no. 2, pp. 431–444, Oct. 2022. doi: 10.1109/TNSE.2021.3120552
|
[13] |
Y. Yan, S. Yu, X. Gao, D. Wu, and T. Li, “Continuous and periodic event-triggered sliding-mode control for path following of underactuated surface vehicles,” IEEE Trans. Cybernetics, vol. 54, no. 1, pp. 449–461, Apr. 2024. doi: 10.1109/TCYB.2023.3265039
|
[14] |
Z. Zheng, Y. Huang, L. Xie, and B. Zhu, “Adaptive trajectory tracking control of a fully actuated surface vessel with asymmetrically constrained input and output,” IEEE Trans. Control Systems Technology, vol. 26, no. 5, pp. 1851–1859, Sept. 2018. doi: 10.1109/TCST.2017.2728518
|
[15] |
Z. Liu, Y. Zhang, C. Yuan, and J. Luo, “Adaptive path following control of unmanned surface vehicles considering environmental disturbances and system constraints,” IEEE Trans. Systems, Man, and Cybernetics: Systems, vol. 51, no. 1, pp. 339–353, Jan. 2021. doi: 10.1109/TSMC.2018.2871672
|
[16] |
Y. Ma, G. Zhu, and Z. Li, “Error-driven-based nonlinear feedback recursive design for adaptive NN trajectory tracking control of surface ships with input saturation,” IEEE Intelligent Transportation Systems Magazine, vol. 11, no. 2, pp. 17–28, Mar. 2019. doi: 10.1109/MITS.2019.2903517
|
[17] |
L. Chen, R. Cui, C. Yang, and W. Yan, “Adaptive neural network control of underactuated surface vessels with guaranteed transient performance: Theory and experimental results,” IEEE Trans. Industrial Electronics, vol. 67, no. 5, pp. 4024–4035, May 2020. doi: 10.1109/TIE.2019.2914631
|
[18] |
J.-X. Zhang, T. Yang, and T. Chai, “Neural network control of underactuated surface vehicles with prescribed trajectory tracking performance,” IEEE Trans. Neural Networks and Learning Systems, vol. 35, no. 6, pp. 8026–8039, Jun. 2024. doi: 10.1109/TNNLS.2022.3223666
|
[19] |
W. Song, Y. Li, and S. Tong, “Fuzzy finite-time H∞ hybrid-triggered dynamic positioning control of nonlinear unmanned marine vehicles under cyber-attacks,” IEEE Trans. Intelligent Vehicles, vol. 9, no. 1, pp. 970–980, May 2024. doi: 10.1109/TIV.2023.3281578
|
[20] |
Z. Peng, D. Wang, and J. Wang, “Data-driven adaptive disturbance observers for model-free trajectory tracking control of maritime autonomous surface ships,” IEEE Trans. Neural Networks and Learning Systems, vol. 32, no. 12, pp. 5584–5594, Jul. 2021. doi: 10.1109/TNNLS.2021.3093330
|
[21] |
B. Du, W. Xie, W. Zhang, and H. Chen, “A target tracking guidance for unmanned surface vehicles in the presence of obstacles,” IEEE Trans. Intelligent Transportation Systems, vol. 25, no. 5, pp. 4102–4115, May 2024. doi: 10.1109/TITS.2023.3326864
|
[22] |
M. Lv, N. Gu, D. Wang, and Z. Peng, “GVF-based guidance and super-twisting control of autonomous surface vehicle for target tracking in obstacle environments with experiments,” Control Engineering Practice, vol. 133, p. 105434, Apr. 2023. doi: 10.1016/j.conengprac.2023.105434
|
[23] |
B. S. Park and S. J. Yoo, “Connectivity-maintaining and collision-avoiding performance function approach for robust leader–follower formation control of multiple uncertain underactuated surface vessels,” Automatica, vol. 127, p. 109501, May 2021. doi: 10.1016/j.automatica.2021.109501
|
[24] |
M. S. Wiig, K. Y. Pettersen, and T. R. Krogstad, “Collision avoidance for underactuated marine vehicles using the constant avoidance angle algorithm,” IEEE Trans. Control Systems Technology, vol. 28, no. 3, pp. 951–966, Mar. 2020. doi: 10.1109/TCST.2019.2903451
|
[25] |
S.-L. Dai, S. He, H. Cai, and C. Yang, “Adaptive leader–follower formation control of underactuated surface vehicles with guaranteed performance,” IEEE Trans. Systems, Man, and Cybernetics: Systems, vol. 52, no. 3, pp. 1997–2008, Mar. 2022. doi: 10.1109/TSMC.2020.3036120
|
[26] |
N. Gu, H. Wang, A. Wang, and L. Liu, “Safety-critical game-based formation control of underactuated autonomous surface vehicles,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 1102–1104, Apr. 2023. doi: 10.1109/JAS.2023.123120
|
[27] |
H. Wei and Y. Shi, “MPC-based motion planning and control enables smarter and safer autonomous marine vehicles: perspectives and a tutorial survey,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 1, pp. 8–24, Jan. 2023. doi: 10.1109/JAS.2022.106016
|
[28] |
C. Liu, Q. Hu, X. Wang, and J. Yin, “Event-triggered-based nonlinear model predictive control for trajectory tracking of underactuated ship with multi-obstacle avoidance,” Ocean Engineering, vol. 253, p. 111278, Jun. 2022. doi: 10.1016/j.oceaneng.2022.111278
|
[29] |
G. Wen, J. Lam, J. Fu, and S. Wang, “Distributed MPC-based robust collision avoidance formation navigation of constrained multiple USVs,” IEEE Trans. Intelligent Vehicles, vol. 9, no. 1, pp. 1804–1816, Jan. 2024. doi: 10.1109/TIV.2023.3315367
|
[30] |
G. Lv, Z. Peng, H. Wang, L. Liu, D. Wang, and T. Li, “Extended-state-observer-based distributed model predictive formation control of under-actuated unmanned surface vehicles with collision avoidance,” Ocean Engineering, vol. 238, p. 109587, Oct. 2021. doi: 10.1016/j.oceaneng.2021.109587
|
[31] |
G. Lyu, Z. Peng, D. Wang, and J. Wang, “Safety-certified receding-horizon motion planning and containment control of autonomous surface vehicles via neurodynamic optimization,” IEEE Trans. Intelligent Vehicles, vol. 10, no. 4, pp. 2263−2275, Apr. 2025.
|
[32] |
N.-Q.-H. Tran, I. Prodan, E. I. Grøtli, and L. Lefèvre, “Safe navigation in a coastal environment of multiple surface vehicles under uncertainties: A combined use of potential field constructions and NMPC,” Ocean Engineering, vol. 216, p. 107706, Nov. 2020. doi: 10.1016/j.oceaneng.2020.107706
|
[33] |
F.-Y. Wang, “Parallel control and management for intelligent transportation systems: concepts, architectures, and applications,” IEEE Trans. Intelligent Transportation Systems, vol. 11, no. 3, pp. 630–638, Sept. 2010. doi: 10.1109/TITS.2010.2060218
|
[34] |
Q. Wei, H. Li, and F.-Y. Wang, “Parallel control for continuous-time linear systems: A case study,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 919–928, Jul. 2020. doi: 10.1109/JAS.2020.1003216
|
[35] |
Y. Zhang, W. Wu, J. Lu, and W. Zhang, “Neural predictor-based dynamic surface parallel control for mimo uncertain nonlinear strict-feedback systems,” IEEE Trans. Circuits and Systems II: Express Briefs, vol. 70, no. 8, pp. 2909–2913, Aug. 2023.
|
[36] |
Y. Liufu, L. Jin, M. Shang, X. Wang, and F.-Y. Wang, “ACP-incorporated perturbation-resistant neural dynamics controller for autonomous vehicles,” IEEE Trans. Intelligent Vehicles, vol. 9, no. 4, pp. 4675–4686, Apr. 2024. doi: 10.1109/TIV.2023.3348632
|
[37] |
A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier function based quadratic programs for safety critical systems,” IEEE Trans. Autom. Control, vol. 62, no. 8, pp. 3861–3876, Aug. 2017. doi: 10.1109/TAC.2016.2638961
|
[38] |
W. Xiao and C. Belta, “High-order control barrier functions,” IEEE Trans. Automatic Control, vol. 67, no. 7, pp. 3655–3662, July. 2022. doi: 10.1109/TAC.2021.3105491
|
[39] |
Y. Xiong, D.-H. Zhai, M. Tavakoli, and Y. Xia, “Discrete-time control barrier function: high-order case and adaptive case,” IEEE Trans. Cybernetics, vol. 53, no. 5, pp. 3231–3239, May 2023. doi: 10.1109/TCYB.2022.3170607
|
[40] |
R. Skjetne, T. I. Fossen, and P. V. Kokotović, “Adaptive maneuvering, with experiments, for a model ship in a marine control laboratory,” Automatica, vol. 41, no. 2, pp. 289–298, Feb. 2005. doi: 10.1016/j.automatica.2004.10.006
|
[41] |
H. Zheng, J. Li, Z. Tian, C. Liu, and W. Wu, “Hybrid physics-learning model based predictive control for trajectory tracking of unmanned surface vehicles,” IEEE Trans. Intelligent Transportation Systems, vol. 25, no. 9, pp. 11522−11533, Sept. 2024.
|
[42] |
Y. Xia, Q. Liu, J. Wang, and A. Cichocki, “A survey of neurodynamic optimization,” IEEE Trans. Emerging Topics in Computational Intelligence, vol. 8, no. 4, pp. 2677–2696, Aug. 2024. doi: 10.1109/TETCI.2024.3369667
|
[43] |
H. Che and J. Wang, “A collaborative neurodynamic approach to global and combinatorial optimization,” Neural Networks, vol. 114, pp. 15–27, Feb. 2019. doi: 10.1016/j.neunet.2019.02.002
|
[44] |
D. Roetenberg, H. J. Luinge, C. T. M. Baten, and P. H. Veltink, “Compensation of magnetic disturbances improves inertial and magnetic sensing of human body segment orientation,” IEEE Trans. Neural Systems and Rehabilitation Engineering, vol. 13, no. 3, pp. 395–405, Sept. 2005. doi: 10.1109/TNSRE.2005.847353
|