IEEE/CAA Journal of Automatica Sinica
Citation:  Z. H. Li, D. Shen, and X. H. Yu, “Enhancing iterative learning control with fractional power update law,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 5, pp. 1137–1149, May 2023. doi: 10.1109/JAS.2023.123525 
[1] 
D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of iterative learning control: A learningbased method for high performance tracking control,” IEEE Control Systems Magazine, vol. 26, no. 3, pp. 96–114, 2006. doi: 10.1109/MCS.2006.1636313

[2] 
D. Meng and J. Zhang, “Robust optimizationbased iterative learning control for nonlinear systems with nonrepetitive uncertainties,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 5, pp. 1001–1014, 2021. doi: 10.1109/JAS.2021.1003973

[3] 
Y. Hui, R. Chi, B. Huang, and Z. Hou, “Extended state observerbased datadriven iterative learning control for permanent magnet linear motor with initial shifts and disturbances,” IEEE Trans. Systems,Man,and Cybernetics: Systems, vol. 51, no. 3, pp. 1881–1891, 2021. doi: 10.1109/TSMC.2019.2907379

[4] 
A. A. Armstrong, A. J. Wagoner Johnson, and A. G. Alleyne, “An improved approach to iterative learning control for uncertain systems,” IEEE Trans. Control Systems Technology, vol. 29, no. 2, pp. 546–555, 2021. doi: 10.1109/TCST.2019.2952327

[5] 
D. Shen, “Practical learningtracking framework under unknown nonrepetitive channel randomness,” IEEE Trans. Automatic Control, pp. 1–16, 2022.

[6] 
A. DeutschmannOlek, G. Stadler, and A. Kugi, “Stochastic iterative learning control for lumped and distributedparameter systems: A wienerfiltering approach,” IEEE Trans. Automatic Control, vol. 66, no. 8, pp. 3856–3862, 2021. doi: 10.1109/TAC.2020.3028839

[7] 
Z. Wang, R. Zhou, C. Hu, and Y. Zhu, “Online iterative learning compensation method based on model prediction for trajectory tracking control systems,” IEEE Trans. Industrial Informatics, vol. 18, no. 1, pp. 415–425, 2022. doi: 10.1109/TII.2021.3085845

[8] 
C. Hua, Y. Qiu, and X. Guan, “Eventtriggered iterative learning containment control of modelfree multiagent systems,” IEEE Trans. Systems,Man,and Cybernetics: Systems, vol. 51, no. 12, pp. 7719–7726, 2021. doi: 10.1109/TSMC.2020.2981404

[9] 
F. H. Kong and I. R. Manchester, “Contraction analysis of nonlinear noncausal iterative learning control,” Systems &Control Letters, vol. 136, p. 104599, 2020.

[10] 
Q. Yu and Z. Hou, “Adaptive fuzzy iterative learning control for highspeed trains with both randomly varying operation lengths and system constraints,” IEEE Trans. Fuzzy Systems, vol. 29, no. 8, pp. 2408–2418, 2021. doi: 10.1109/TFUZZ.2020.2999958

[11] 
X. Bu and Z. Hou, “Adaptive iterative learning control for linear systems with binaryvalued observations,” IEEE Trans. Neural Networks and Learning Systems, vol. 29, no. 1, pp. 232–237, 2018. doi: 10.1109/TNNLS.2016.2616885

[12] 
X. Jin, “Adaptive iterative learning control for highorder nonlinear multiagent systems consensus tracking,” Systems &Control Letters, vol. 89, pp. 16–23, 2016.

[13] 
W. Xiong, L. Xu, T. Huang, X. Yu, and Y. Liu, “Finiteiteration tracking of singular coupled systems based on learning control with packet losses,” IEEE Trans. Systems,Man,and Cybernetics: Systems, vol. 50, no. 1, pp. 245–255, 2020. doi: 10.1109/TSMC.2017.2770160

[14] 
W. Xiong, D. W. Ho, and S. Wen, “A periodic iterative learning scheme for finiteiteration tracking of discrete networks based on flexray communication protocol,” Information Sciences, vol. 548, pp. 344–356, 2021. doi: 10.1016/j.ins.2020.10.017

[15] 
X. Cheng, H. Jiang, D. Shen, and X. Yu, “A novel adaptive gain strategy for stochastic learning control,” IEEE Trans. Cybernetics, pp. 1–12, 2022.

[16] 
V. T. Haimo, “Finite time controllers,” SIAM Journal on Control and Optimization, vol. 24, no. 4, pp. 760–770, 1986. doi: 10.1137/0324047

[17] 
S. P. Bhat and D. S. Bernstein, “Finitetime stability of continuous autonomous systems,” SIAM Journal on Control and Optimization, vol. 38, no. 3, pp. 751–766, 2000. doi: 10.1137/S0363012997321358

[18] 
W. M. Haddad and A. L’Afflitto, “Finitetime stabilization and optimal feedback control,” IEEE Trans. Automatic Control, vol. 61, no. 4, pp. 1069–1074, 2016. doi: 10.1109/TAC.2015.2454891

[19] 
S. Yu, X. Yu, B. Shirinzadeh, and Z. Man, “Continuous finitetime control for robotic manipulators with terminal sliding mode,” Automatica, vol. 41, no. 11, pp. 1957–1964, 2005. doi: 10.1016/j.automatica.2005.07.001

[20] 
X. Yu, J.X. Xu, Y. Hong, and S. Yu, “Analysis of a class of discretetime systems with power rule,” Automatica, vol. 43, no. 3, pp. 562–566, 2007. doi: 10.1016/j.automatica.2006.09.013

[21] 
H. Hou, X. Yu, L. Xu, K. Rsetam, and Z. Cao, “Finitetime continuous terminal sliding mode control of servo motor systems,” IEEE Trans. Industrial Electronics, vol. 67, no. 7, pp. 5647–5656, 2020. doi: 10.1109/TIE.2019.2931517

[22] 
F. Wu, C. Li, and J. Lian, “Finitetime stability of switched nonlinear systems with state jumps: A dwelltime method,” IEEE Trans. Systems,Man,and Cybernetics: Systems, vol. 52, no. 10, pp. 6061–6072, 2022. doi: 10.1109/TSMC.2021.3134765

[23] 
F. Tatari, H. Modares, C. Panayiotou, and M. Polycarpou, “Finitetime distributed identification for nonlinear interconnected systems,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 7, pp. 1188–1199, 2022. doi: 10.1109/JAS.2022.105683

[24] 
Y. Liu, H. Li, R. Lu, Z. Zuo, and X. Li, “An overview of finite/fixedtime control and its application in engineering systems,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 12, pp. 2106–2120, 2022. doi: 10.1109/JAS.2022.105413

[25] 
G. Sun, Z. Ma, and J. Yu, “Discretetime fractional order terminal sliding mode tracking control for linear motor,” IEEE Trans. Industrial Electronics, vol. 65, no. 4, pp. 3386–3394, 2018. doi: 10.1109/TIE.2017.2748045

[26] 
F. Li, Z. Wu, C. Yang, Y. Shi, T. Huang, and W. Gui, “A novel learningbased asynchronous sliding mode control for discretetime semiMarkov jump systems,” Automatica, vol. 143, p. 110428, 2022. doi: 10.1016/j.automatica.2022.110428

[27] 
S. Kuang, D. Dong, and I. R. Petersen, “Rapid Lyapunov control of finitedimensional quantum systems,” Automatica, vol. 81, pp. 164–175, 2017. doi: 10.1016/j.automatica.2017.02.041

[28] 
P. Ioannou and B. Fidan, Adaptive Control Tutorial. SIAM, 2006.

[29] 
W. Zhou, M. Yu, and D. Huang, “A highorder internal model based iterative learning control scheme for discrete linear timevarying systems,” Int. Journal of Automation and Computing, vol. 12, no. 3, pp. 330–336, 2015. doi: 10.1007/s116330150886x
