IEEE/CAA Journal of Automatica Sinica
Citation:  Y. Zhou, X. Luo, and M. C. Zhou, “Cryptocurrency transaction network embedding from static and dynamic perspectives: An overview,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 5, pp. 1105–1121, May 2023. doi: 10.1109/JAS.2023.123450 
[1] 
M. Saad, J. Choi, D. Nyang, J. Kim, and A. Mohaisen, “Toward characterizing blockchainbased cryptocurrencies for highly accurate predictions,” IEEE Syst. J., vol. 14, no. 1, pp. 321–332, Mar. 2020. doi: 10.1109/JSYST.2019.2927707

[2] 
X. Han, Y. Yuan, and F.Y. Wang, “A blockchainbased framework for central bank digital currency,” in Proc. IEEE Int. Conf. Service Operations and Logistics, and Informatics, Zhengzhou, China, 2019, pp. 263–268.

[3] 
A. Ghosh, S. Gupta, A. Dua, and N. Kumar, “Security of cryptocurrencies in blockchain technology: Stateofart, challenges and future prospects,” J. Netw. Comput. Appl., vol. 163, p. 102635, Aug. 2020. doi: 10.1016/j.jnca.2020.102635

[4] 
M. H. U. Rehman, K. Salah, E. Damiani, and D. Svetinovic, “Trust in blockchain cryptocurrency ecosystem,” IEEE Trans. Eng. Manage., vol. 67, no. 4, pp. 1196–1212, Nov. 2020. doi: 10.1109/TEM.2019.2948861

[5] 
J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W. Felten, “SoK: Research perspectives and challenges for bitcoin and cryptocurrencies,” in Proc. IEEE Symp. Security and Privacy, San Jose, USA, 2015, pp. 104–121.

[6] 
S. Dustdar, Fernández, J. M. García, and A. RuizCortés, “Elastic smart contracts in blockchains,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 12, pp. 1901–1912, Dec. 2021. doi: 10.1109/JAS.2021.1004222

[7] 
H. M. Lu, Y. Tang, and Y. Sun, “DRRSBC: Decentralized routing registration system based on blockchain,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 12, pp. 1868–1876, Dec. 2021. doi: 10.1109/JAS.2021.1004204

[8] 
Y. Zhang and M. C. Zhou, “Security and trust in blockchains: Architecture, key technologies, and open issues,” IEEE Trans. Comput. Soc. Syst., vol. 7, no. 3, pp. 790–801, Jun. 2020. doi: 10.1109/TCSS.2020.2990103

[9] 
W. L. Chen, J. Wu, Z. B. Zheng, C. Chen, and Y. R. Zhou, “Market manipulation of bitcoin: Evidence from mining the Mt. Gox transaction network,” in Proc. IEEE Conf. Computer Communications, Paris, France, 2019, pp. 964–972.

[10] 
B. Y. Gao, H. Y. Wang, C. Xia, S. W. Wu, Y. J Zhou, X. P Luo, and G. Tyson, “Tracking counterfeit cryptocurrency endtoend,” Proc. ACM Meas. Analy. Comput. Syst., vol. 4, no. 3, p. 50, Jun. 2021.

[11] 
D. Vujičić, D. Jagodić, and S. Ranđić, “Blockchain technology, bitcoin, and Ethereum: A brief overview,” in Proc. 17th Int. Symp. InfotehJahorina, East Sarajevo, Bosnia and Herzegovina, 2018, pp. 1–6.

[12] 
M. Conti, E. S. Kumar, C. Lal, and S. Ruj, “A survey on security and privacy issues of bitcoin,” IEEE Commun. Surv. Tutorials, vol. 20, no. 4, pp. 3416–3452, Apr. 2018. doi: 10.1109/COMST.2018.2842460

[13] 
S. Wang, L. W. Ouyang, Y. Yuan, X. C. Ni, X. Han, and F.Y. Wang, “Blockchainenabled smart contracts: Architecture, applications, and future trends,” IEEE Trans. Syst.,Man,Cybern.: Syst., vol. 49, no. 11, pp. 2266–2277, Nov. 2019. doi: 10.1109/TSMC.2019.2895123

[14] 
F. Tschorsch and B. Scheuermann, “Bitcoin and beyond: A technical survey on decentralized digital currencies,” IEEE Commun. Surv. Tutorials, vol. 18, no. 3, pp. 2084–2123, Mar. 2016. doi: 10.1109/COMST.2016.2535718

[15] 
M. C. K. Khalilov and A. Levi, “A survey on anonymity and privacy in bitcoinlike digital cash systems,” IEEE Commun. Surv. Tutorials, vol. 20, no. 3, pp. 2543–2585, Mar. 2018. doi: 10.1109/COMST.2018.2818623

[16] 
Helo and Y. Hao, “Blockchains in operations and supply chains: A model and reference implementation,” Comput. Ind. Eng., vol. 136, pp. 242–251, Oct. 2019. doi: 10.1016/j.cie.2019.07.023

[17] 
Y. Zhang, M. C. Zhou, Q. X. Zhao, A. Abusorrah, and O. O. Bamasag, “A performanceoptimized consensus mechanism for consortium blockchains consisting of trustvarying nodes,” IEEE Trans. Netw. Sci. Eng., vol. 8, no. 3, pp. 2147–2159, Jul.–Sept. 2021. doi: 10.1109/TNSE.2021.3079415

[18] 
Y. M. Liu, F. R. Yu, X. Li, H. Ji, and V. C. M. Leung, “Blockchain and machine learning for communications and networking systems,” IEEE Commun. Surv. Tutorials, vol. 22, no. 2, pp. 1392–1431, Feb. 2020. doi: 10.1109/COMST.2020.2975911

[19] 
L. Yang, “The blockchain: Stateoftheart and research challenges,” J. Ind. Inf. Integr., vol. 15, pp. 80–90, Sept. 2019.

[20] 
J. J. Wu, J. L. Liu, W. L. Chen, H. W. Huang, Z. B. Zheng, and Y. Zhang, “Detecting mixing services via mining bitcoin transaction network with hybrid motifs,” IEEE Trans. Syst.,Man,Cybern.: Syst., vol. 52, no. 4, pp. 2237–2249, Apr. 2022. doi: 10.1109/TSMC.2021.3049278

[21] 
M. Mirtaheri, S. AbuElHaija, F. Morstatter, G. V. Steeg, and A. Galstyan, “Identifying and analyzing cryptocurrency manipulations in social media,” IEEE Trans. Comput. Soc. Syst., vol. 8, no. 3, pp. 607–617, Jun. 2021. doi: 10.1109/TCSS.2021.3059286

[22] 
S. Farrugia, J. Ellul, and G. Azzopardi, “Detection of illicit accounts over the Ethereum blockchain,” Expert Syst. Appl., vol. 150, p. 113318, Jul. 2020. doi: 10.1016/j.eswa.2020.113318

[23] 
J. J. Wu, J. L. Liu, Y. J. Zhao, and Z. B. Zheng, “Analysis of cryptocurrency transactions from a network perspective: An overview,” J. Netw. Comput. Appl., vol. 190, p. 103139, Sept. 2021. doi: 10.1016/j.jnca.2021.103139

[24] 
F. Zola, M. Eguimendia, J. L. Bruse, and R. O. Urrutia, “Cascading machine learning to attack bitcoin anonymity,” in Proc. IEEE Int. Conf. Blockchain, Atlanta, USA, 2019, pp. 10–17.

[25] 
M. Caprolu, S. Raponi, G. Oligeri, and R. Di Pietro, “Cryptomining makes noise: Detecting cryptojacking via machine learning,” Comput. Commun., vol. 171, pp. 126–139, Apr. 2021. doi: 10.1016/j.comcom.2021.02.016

[26] 
Z. C. He, J. Liu, N. Li, and Y. L. Huang, “Learning networktonetwork model for contentrich network embedding,” in Proc. 25th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, Anchorage, USA, 2019, pp. 1037–1045.

[27] 
L. Z. Liao, X. N. He, H. W. Zhang, and T. S. Chua, “Attributed social network embedding,” IEEE Trans. Knowl. Data Eng., vol. 30, no. 12, pp. 2257–2270, Dec. 2018. doi: 10.1109/TKDE.2018.2819980

[28] 
B. B. Hu, Y. Fang, and C. Shi, “Adversarial learning on heterogeneous information networks,” in Proc. 25th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, Anchorage, USA, 2019, pp. 120–129.

[29] 
P. Cui, X. Wang, J. Pei, and W. W. Zhu, “A survey on network embedding,” IEEE Trans. Knowl. Data Eng., vol. 31, no. 5, pp. 833–852, May 2019. doi: 10.1109/TKDE.2018.2849727

[30] 
X. Wang, Y. F. Lu, C. Shi, R. J. Wang, P. Cui, and S. Mou, “Dynamic heterogeneous information network embedding with metapath based proximity,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 3, pp. 1117–1132, Mar. 2022. doi: 10.1109/TKDE.2020.2993870

[31] 
L. C. Xu, X. K. Wei, J. N. Cao, and P. S. Yu, “Embedding of embedding (EOE): Joint embedding for coupled heterogeneous networks,” in Proc. 10th ACM Int. Conf. Web Search and Data Mining, Cambridge, UK, 2017, pp. 741–749.

[32] 
A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for networks,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, California, USA, 2016, pp. 855–864.

[33] 
J. Z. Qiu, Y. X. Dong, H. Ma, J. Li, K. S. Wang, and J. Tang, “Network embedding as matrix factorization: Unifying DeepWalk, LINE, PTE, and Node2vec,” in Proc. 11th ACM Int. Conf. Web Search and Data Mining, Marina Del Rey, USA, 2018, pp. 459–467.

[34] 
C. C. Tu, W. C. Zhang, Z. Y. Liu, and M. S. Sun, “Maxmargin DeepWalk: Discriminative learning of network representation,” in Proc. 25th Int. Joint Conf. Artificial Intelligence, New York, USA, 2016, pp. 3889–3895.

[35] 
C. Yang, Z. Y. Liu, D. L. Zhao, M. S. Sun, and E. Y. Chang, “Network representation learning with rich text information,” in Proc. 24th Int. Conf. Artificial Intelligence, Buenos, Argentina, 2015, pp. 2111–2117.

[36] 
S. S. Cao, W. Lu, and Q. K. Xu, “Deep neural networks for learning graph representations,” in Proc. AAAI Conf. Artif. Intell., vol. 30, no. 1, pp. 1145–1152, Feb. 2016.

[37] 
B. Perozzi, R. AlRfou, and S. Skiena, “DeepWalk: Online learning of social representations,” in Proc. 20th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, New York, USA, 2014, pp. 701–710.

[38] 
D. X. Wang, P. Cui, and W. W. Zhu, “Structural deep network embedding,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, California, USA, 2016, pp. 1225–1234.

[39] 
J. Tang, M. Qu, M. Z. Wang, M. Zhang, J. Yan, and Q. Z. Mei, “LINE: Largescale information network embedding,” in Proc. 24th Int. Conf. World Wide Web, Florence, Italy, 2015, pp. 1067–1077.

[40] 
X. Huang, J. D. Li, and X. Hu, “Label informed attributed network embedding,” in Proc. 10th ACM Int. Conf. Web Search and Data Mining, Cambridge, UK, 2017, pp. 731–739.

[41] 
Z. H. Huang, Z. Y. Wang, R. Zhang, Y. Y. Zhao, X. H. Xie, and S. Mehrotra, “Network2Vec: Learning node representation based on space mapping in networks,” in Proc. Int. Conf. Data Mining Workshops, Beijing, China, 2019, pp. 727–734.

[42] 
Z. Y. Zhao, H. Zhou, L. Qi, L. Chang, and M. C. Zhou, “Inductive representation learning via CNN for partiallyunseen attributed networks,” IEEE Trans. Netw. Sci. Eng., vol. 8, no. 1, pp. 695–706, Jan.–Mar. 2021. doi: 10.1109/TNSE.2020.3048902

[43] 
J. Z. Qiu, Y. X. Dong, H. Ma, J. Li, C. Wang, K. S. Wang, and J. Tang, “NetSMF: Largescale network embedding as sparse matrix factorization,” in Proc. World Wide Web Conf., San Francisco, USA, 2019, pp. 1509–1520.

[44] 
X. Liu, T. Murata, K. S. Kim, C. Kotarasu, and C. Y. Zhuang, “A general view for network embedding as matrix factorization,” in Proc. 12th ACM Int. Conf. Web Search and Data Mining, Melbourne, Australia, 2019, pp. 375–383.

[45] 
B. Y. Chen, Z. Yang, and Z. W. Yang, “An algorithm for lowrank matrix factorization and its applications,” Neurocomputing, vol. 275, pp. 1012–1020, Jan. 2018. doi: 10.1016/j.neucom.2017.09.052

[46] 
Y. Song, M. Li, X. Luo, G. S. Yang, and C. J. Wang, “Improved symmetric and nonnegative matrix factorization models for undirected, sparse and largescaled networks: A triple factorizationbased approach,” IEEE Trans. Ind. Inf., vol. 16, no. 5, pp. 3006–3017, May 2020. doi: 10.1109/TII.2019.2908958

[47] 
G. F. Chen, C. Xu, J. Y. Wang, J. W. Feng, and J. Q. Feng, “Graph regularization weighted nonnegative matrix factorization for link prediction in weighted complex network,” Neurocomputing, vol. 369, pp. 50–60, Dec. 2019. doi: 10.1016/j.neucom.2019.08.068

[48] 
H. A. Song, B. K. Kim, T. L. Xuan, and S. Y. Lee, “Hierarchical feature extraction by multilayer nonnegative matrix factorization network for classification task,” Neurocomputing, vol. 165, pp. 63–74, Oct. 2015. doi: 10.1016/j.neucom.2014.08.095

[49] 
Y. Yuan and F.Y. Wang, “Blockchain and cryptocurrencies: Model, techniques, and applications,” IEEE Trans. Syst.,Man,Cybern.: Syst., vol. 48, no. 9, pp. 1421–1428, Sept. 2018. doi: 10.1109/TSMC.2018.2854904

[50] 
I. Alqassem, I. Rahwan, and D. Svetinovic, “The antisocial system properties: Bitcoin network data analysis,” IEEE Trans. Syst.,Man,Cybern.: Syst., vol. 50, no. 1, pp. 21–31, Jan. 2020. doi: 10.1109/TSMC.2018.2883678

[51] 
M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques for embedding and clustering,” in Proc. 14th Int. Conf. Neural Information Processing System, Vancouver, Canada, 2001, pp. 585–591.

[52] 
M. D. Ou, P. Cui, J. Pei, Z. W. Zhang, and W. W. Zhu, “Asymmetric transitivity preserving graph embedding,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, California, USA, 2016, pp. 1105–1114.

[53] 
X. Wang, P. Cui, J. Wang, J. Pei, W. W. Zhu, and S. Q. Yang, “Community preserving network embedding,” in Proc. 31st AAAI Conf. Artificial Intelligence, San Francisco, USA, 2017, pp. 203–209.

[54] 
L. Hu, X. H. Yuan, X. Liu, S. W. Xiong, and X. Luo, “Efficiently detecting protein complexes from protein interaction networks via alternating direction method of multipliers,” IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 16, no. 6, pp. 1922–1935, Nov.–Dec. 2019. doi: 10.1109/TCBB.2018.2844256

[55] 
X. Luo, M. S. Shang, and S. Li, “Efficient extraction of nonnegative latent factors from highdimensional and sparse matrices in industrial applications,” in Proc. IEEE 16th Int. Conf. Data Mining, Barcelona, Spain, 2016, pp. 311–319.

[56] 
J. D. Li, H. Dani, X. Hu, J. L. Tang, Y. Chang, and H. Liu, “Attributed network embedding for learning in a dynamic environment,” in Proc. ACM Conf. Information and Knowledge Management, Singapore, Singapore, 2017, pp. 387–396.

[57] 
D. Y. Zhu, P. Cui, Z. W. Zhang, J. Pei, and W. W. Zhu, “Highorder proximity preserved embedding for dynamic networks,” IEEE Trans. Knowl. Data Eng., vol. 30, no. 11, pp. 2134–2144, Nov. 2018.

[58] 
K. Q. Chen, L. L. Yu, T. T. Zhu, L i, and J. Kurths, “Succinct representation of dynamic networks,” IEEE Trans. Knowl. Data Eng., vol. 33, no. 7, pp. 2983–2994, Jul. 2021. doi: 10.1109/TKDE.2019.2960240

[59] 
A. Zhiyuli, X. Liang, Y. F. Chen, and X. Y. Du, “Modeling largescale dynamic social networks via node embeddings,” IEEE Trans. Knowl. Data Eng., vol. 31, no. 10, pp. 1994–2007, Oct. 2019. doi: 10.1109/TKDE.2018.2872602

[60] 
Y. L. Xiang, Y. Xiong, and Y. Y. Zhu, “TIGCN: A dynamic network embedding method with time interval information,” in Proc. IEEE Int. Conf. Big Data, Atlanta, USA, 2020, pp. 838–847.

[61] 
Y. J, Zhou, W. L. Liu, Y. Pei, L. Wang, D. R. Zha, and T. S. Fu, “Dynamic network embedding by semantic evolution,” in Proc. Int. Joint Conf. Neural Networks, Budapest, Hungary, 2019, pp. 1–8.

[62] 
F. Xia, J. Y. Liu, H. S. Nie, Y. H. Fu, L. T. Wan, and X. J. Kong, “Random walks: A review of algorithms and applications,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 4, no. 2, pp. 95–107, Apr. 2020. doi: 10.1109/TETCI.2019.2952908

[63] 
A. Narayanan, M. Chandramohan, R. Venkatesan, L. H. Chen, Y. Liu, and S. Jaiswal, “Graph2vec: Learning distributed representations of graphs,” 2017. arXiv preprint arXiv: 1707.05005.

[64] 
Q. Yuan, B. Y. Huang, J. Zhang, J. J. Wu, H. N. Zhang, and X. Zhang, “Detecting phishing scams on ethereum based on transaction records,” in Proc. IEEE Int. Symp. Circuits and Systems, Seville, Spain, 2020, pp. 1–5.

[65] 
B. Tao, I. W. H. Ho, and H. N. Dai, “Complex network analysis of the bitcoin blockchain network,” in Proc. IEEE Int. Symp. Circuits and Systems, Daegu, Korea (South), 2021, pp. 1–5.

[66] 
Z. H. Yuan, Q. Yuan, and J. J. Wu, “Phishing detection on ethereum via learning representation of transaction subgraphs,” in Proc. 2nd Int. Conf. Blockchain and Trustworthy Systems, Dali, China, 2020, pp. 178–191.

[67] 
L. J. Ma, Y. C. Ma, Q. Z. Lin, J. K. Ji, C. A. C. Coello, and M. G. Gong, “SNEGAN: Signed network embedding by using generative adversarial nets,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 6, no. 1, pp. 136–149, Feb. 2022. doi: 10.1109/TETCI.2020.3035937

[68] 
X. M. Li, H. Fang, and J. Zhang, “Supervised user ranking in signed social networks,” in Proc. 33rd AAAI Conf. Artif. Intell., Palo Alto, USA, 2019, pp. 184–191.

[69] 
J. Li, Y. Liu, and L. Zou, “DynGCN: A dynamic graph convolutional network based on spatialtemporal modeling,” in Proc. 21st Int. Conf. Web Information Systems Engineering, Amsterdam, The Netherlands, 2020, pp. 83–95.

[70] 
V. Patel, L. Pan, and S. Rajasegarar, “Graph deep learning based anomaly detection in ethereum blockchain network,” in Proc. 14th Int. Conf. Network and System Security, Melbourne, Australia, 2020, pp. 132–148.

[71] 
T. Huang, Y. H. Zhang, J. J. Wu, J. Y. Fang, and Z. B. Zheng, “MGGCN: Fast and effective learning with mixgrained aggregators for training large graph convolutional networks,” 2020. arXiv preprint arXiv: 2011.09900.

[72] 
D. S. H. Tam, W. C. Lau, B. Hu, Q. F. Ying, D. M. Chiu, and H. Liu, “Identifying illicit accounts in large scale epayment networks — A graph representation learning approach,” 2019. arXiv preprint arXiv: 1906.05546.

[73] 
T. Derr, Y. Ma, and J. L. Tang, “Signed graph convolutional networks,” in Proc. IEEE Int. Conf. Data Mining, Singapore, Singapore, 2018, pp. 929–934.

[74] 
M. Qu, Y. Bengio, and J. Tang, “GMNN: Graph Markov neural networks,” in Proc. 36th Int. Conf. Machine Learning, Long Beach, USA, 2019, pp. 5241–5250.

[75] 
R. Agrawal and L. De Alfaro, “Learning edge properties in graphs from path aggregations,” in Proc. World Wide Web Conf., San Francisco, USA, 2019, pp. 15–25.

[76] 
V. Verma, M. Qu, K. Kawaguchi, A. Lamb, Y. Bengio, J. Kannala, and J. Tang, “GraphMix: Improved training of GNNs for semisupervised learning,” in Proc. 35th AAAI Conf. Artif. Intell., Palo Alto, USA, 2021, pp. 10024–10032.

[77] 
J. J. Huang, H. W. Shen, L. Hou, and X. Q. Cheng, “SDGNN: Learning node representation for signed directed networks,” in Proc. 35th AAAI Conf. Artif. Intell., Palo Alto, USA, 2021, pp. 196–203.

[78] 
W. Kudo, M. Nishiguchi, and F. Toriumi, “GCNEXT: Graph convolutional network with expanded balance theory for fraudulent user detection,” Soc. Netw. Anal. Min., vol. 10, no. 1, p. 85, Oct. 2020. doi: 10.1007/s1327802000697w

[79] 
X. Liu, Z. Y. Tang, P. Li, S. Guo, X. Fan, and J. B. Zhang, “A graph learning based approach for identity inference in DApp platform blockchain,” IEEE Trans. Emerg. Top. Comput., vol. 10, no. 1, pp. 438–449, Jan.–Mar. 2022. doi: 10.1109/TETC.2020.3027309

[80] 
J. J. Huang, H. W. Shen, L. Hou, and X. Q. Cheng, “Signed graph attention networks,” in Proc. 28th Int. Conf. Artificial Neural Networks, Munich, Germany, 2019, pp. 566–577.

[81] 
Y. Li, Y. Tian, J. W. Zhang, and Y. Chang, “Learning signed network embedding via graph attention,” in Proc. 34th AAAI Conf. Artif. Intell., New York, USA, 2020, pp. 4772–4779.

[82] 
Y. Wu, B. J. Wang, and W. Li, “Hierarchical attention signed network,” in Proc. 4th Int. Conf. Imaging, Signal Processing and Communications, Kumamoto, Japan, 2020, pp. 54–61.

[83] 
W. B. Liu, Z. D. Wang, X. H. Liu, N. Y. Zeng, Y. R. Liu, and F. E. Alsaadi, “A survey of deep neural network architectures and their applications,” Neurocomputing, vol. 234, pp. 11–26, Apr. 2017. doi: 10.1016/j.neucom.2016.12.038

[84] 
S. Y. Yao, Q. Kang, M. C. Zhou, M. J. Rawa, and A. Abusorrah, “A survey of transfer learning for machinery diagnostics and prognostics,” Artif. Intell. Rev., vol. 56, no. 4, pp. 2871–2922, Apr. 2023.

[85] 
Q. Liu, S. X. Liu, G. Y. Wang, and S. Y. Xia, “Social relationship prediction across networks using tritraining BP neural networks,” Neurocomputing, vol. 401, pp. 377–391, Aug. 2020. doi: 10.1016/j.neucom.2020.02.057

[86] 
De Meo, “Trust prediction via matrix factorisation,” ACM Trans. Internet Technol., vol. 19, no. 4, p. 44, Sept. 2019.

[87] 
H. Abdi, “Singular value decomposition (SVD) and generalized singular value decomposition,” in Encyclopedia Measurement and Statistics, N. Salkind, Ed. Thousand Oaks, USA: Sage, 2007, pp. 907–912.

[88] 
Z. G. Liu, Y. G. Yi, and X. Luo, “A highorder proximityincorporated nonnegative matrix factorizationbased community detector,” IEEE Trans. Emerg. Top. Comput. Intell., 2022, DOI: 10.1109/TETCI.2022.3230930.

[89] 
Z. G. Liu, G. X. Yuan, and X. Luo, “Symmetry and nonnegativityconstrained matrix factorization for community detection,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 9, pp. 1691–1693, Sept. 2022. doi: 10.1109/JAS.2022.105794

[90] 
X. Luo, W. Qin, A. Dong, K. Sedraoui, and M. C. Zhou, “Efficient and highquality recommendations via momentumincorporated parallel stochastic gradient descentbased learning,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 2, pp. 402–411, Feb. 2021. doi: 10.1109/JAS.2020.1003396

[91] 
W. Yu, R. J. Mu, Y. Sun, X. Chen, W. J. Wang, and H. M. Wu, “A double nonnegative matrix factorization model for signed network analysis,” in Proc. IEEE Int. Conf. Parallel and Distributed Processing With Applications, Big Data and Cloud Computing, Sustainable Computing and Communications, Social Computing and Networking, Xiamen, China, 2019, pp. 936–943.

[92] 
J. Wang and R. J. Mu, “A regularized convex nonnegative matrix factorization model for signed network analysis,” Soc. Netw. Anal. Min., vol. 11, no. 1, p. 7, Jan. 2021. doi: 10.1007/s13278020007111

[93] 
C. B. He, H. Liu, Y. Tang, S. Y. Liu, X. Fei, Q. W. Cheng, and H. C. Li, “Similarity preserving overlapping community detection in signed networks,” Future Gener. Comput. Syst., vol. 116, pp. 275–290, Mar. 2021. doi: 10.1016/j.future.2020.10.034

[94] 
R. Salakhutdinov and A. Mnih, “Probabilistic matrix factorization,” in Proc. 20th Int. Conf. Neural Information Processing Systems, Vancouver, Canada, 2008, pp. 1257–1264.

[95] 
M. Muzammal, F. Abbasi, Q. Qu, R. Talat, and J. Fan, “A decentralised approach for link inference in large signed graphs,” Future Gener. Comput. Syst., vol. 102, pp. 827–837, Jan. 2020. doi: 10.1016/j.future.2019.09.014

[96] 
S. Y. Liu, J. Xiao, and X. K. Xu, “Link prediction in signed social networks: From status theory to Motif families,” IEEE Trans. Netw. Sci. Eng., vol. 7, no. 3, pp. 1724–1735, Jul.–Sept. 2020. doi: 10.1109/TNSE.2019.2951806

[97] 
T. Qiu, M. Zhang, X. Z. Liu, J. Liu, C. Chen, and W. B. Zhao, “A directed edge weight prediction model using decision tree ensembles in industrial internet of things,” IEEE Trans. Ind. Inf., vol. 17, no. 3, pp. 2160–2168, Mar. 2021. doi: 10.1109/TII.2020.2995766

[98] 
S. Y. Liu, J. Xiao, and X. K. Xu, “Sign prediction by Motif naive Bayes model in social networks,” Inf. Sci., vol. 541, pp. 316–331, Dec. 2020. doi: 10.1016/j.ins.2020.05.128

[99] 
J. L. Pang, W. W. Yuan, and D. H. Guan, “Tridomain pattern preserving sign prediction for signed networks,” Neurocomputing, vol. 421, pp. 234–243, Jan. 2021. doi: 10.1016/j.neucom.2020.08.004

[100] 
Q. Liu, Y. Chen, G. Q. Zhang, and G. Y. Wang, “A novel functional network based on threeway decision for link prediction in signed social networks,” Cogn. Comput., vol. 14, no. 6, pp. 1942–1954, Jun. 2021.

[101] 
D. Lin, J. J. Wu, Q. Yuan, and Z. B. Zheng, “Tedge: Temporal weighted multidigraph embedding for Ethereum transaction network analysis,” Front. Phys., vol. 8, p. 204, Jun. 2020. doi: 10.3389/fphy.2020.00204

[102] 
K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J. Schmidhuber, “LSTM: A search space Odyssey,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 10, pp. 2222–2232, Oct. 2017. doi: 10.1109/TNNLS.2016.2582924

[103] 
Y. Wang, C. W. Zhang, S. Wang, S. Yu, L. Bai, L. X. Cui, and G. D. Xu, “Generative temporal link prediction via selftokenized sequence modeling,” World Wide Web, vol. 23, no. 4, pp. 2471–2488, May 2020. doi: 10.1007/s1128002000821y

[104] 
F. Jiao, X. Guo, X. Jing, D. X. He, H. M. Wu, S. R. Pan, M. G. Gong, and W. J. Wang, “Temporal network embedding for link prediction via VAE joint attention mechanism,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 12, pp. 7400–7413, Dec. 2022. doi: 10.1109/TNNLS.2021.3084957

[105] 
J. Charlier, R. Statem, and J. Hilger, “Modeling smart contracts activities: A tensor based approach,” 2019. arXiv preprint arXiv: 1905.09868.

[106] 
J. Charlier, S. Lagraa, R. State, and J. François, “Profiling smart contracts interactions tensor decomposition and graph mining,” in Proc. 2nd Workshop Mining Data for Financial Applications, Skopje, Macedonia, 2017, pp. 31–42.

[107] 
Y. M. Li, D. S. H. Tam, S. Y. Xie, X. X. Liu, Q. F. Ying, W. C. Lau, D. M. Chiu, and S. Z. Chen, “GTEA: Representation learning for temporal interaction graphs via edge aggregation,” 2020. arXiv preprint arXiv: 2009.05266.

[108] 
D. H. Wang, Z. H. Zhang, Y. H. Ma, T. Zhao, T. W. Jiang, N. V. Chawla, and M. Jiang, “Learning attributestructure coevolutions in dynamic graphs,” 2020. arXiv preprint arXiv: 2007.13004.

[109] 
S. Bonner, A. AtapourAbarghouei, P. T. Jackson, J. Brennan, I. Kureshi, G. Theodoropoulos, A. S. McGough, and B. Obara, “Temporal neighbourhood aggregation: Predicting future links in temporal graphs via recurrent variational graph convolutions,” in Proc. IEEE Int. Conf. Big Data, Los Angeles, USA, 2019, pp. 5336–5345.

[110] 
V. S. Dave and M. Al Hasan, “Triangle completion time prediction using timeconserving embedding,” in Proc. Joint European Conf. Machine Learning and Knowledge Discovery Databases, Würzburg, Germany, 2020, pp. 541–557.

[111] 
A. Pareja, G. Domeniconi, J. Chen, T. F. Ma, T. Suzumura, H. Kanezashi, T. Kaler, T. Schardl, and C. Leiserson, “EvolveGCN: Evolving graph convolutional networks for dynamic graphs,” in Proc. AAAI Conf. Artif. Intell., vol. 34, no. 4, pp. 5363–5370, Apr. 2020.

[112] 
C. M. Wu, G. Nikolentzos, and M. Vazirgiannis, “EvoNet: A neural network for predicting the evolution of dynamic graphs,” in Proc. 29th Int. Conf. Artificial Neural Networks, Bratislava, Slovakia, 2020, pp. 594–606.

[113] 
L. Cai, Z. Z. Chen, C. Luo, J. P. Gui, J. C. Ni, D. Li, and H. F. Chen, “Structural temporal graph neural networks for anomaly detection in dynamic graphs,” in Proc. 30th ACM Int. Conf. Information and Knowledge Management, Queensland, Australia, 2021, pp. 3747–3756.

[114] 
O. A. Malik, S. Ubaru, L. Horesh, M. E. Kilmer, and H. Avron, “Dynamic graph convolutional networks using the tensor Mproduct,” 2019. arXiv preprint arXiv: 1910.07643.

[115] 
L. Akoglu, E. Terzi, O. A. Malik, S. Ubaru, L. Horesh, M. E. Kilmer, and H. Avron, “Dynamic graph convolutional networks using the tensor Mproduct,” in Proc. SIAM Int. Conf. Data Mining, 2021, pp. 729–737.

[116] 
X. Ao, Y. Liu, Z. D. Qin, Y. Sun, and Q. He, “Temporal highorder proximity aware behavior analysis on Ethereum,” World Wide Web, vol. 24, no. 5, pp. 1565–1585, Mar. 2021. doi: 10.1007/s11280021008756

[117] 
H. F. Cao, Z. B. Zhang, L. Sun, and Z. Wang, “Inductive and irregular dynamic network representation based on ordinary differential equations,” Knowl.Based Syst., vol. 227, p. 107271, Sept. 2021. doi: 10.1016/j.knosys.2021.107271

[118] 
F. Manessi, A. Rozza, and M. Manzo, “Dynamic graph convolutional networks,” Pattern Recogn., vol. 97, p. 107000, Jan. 2020. doi: 10.1016/j.patcog.2019.107000

[119] 
X. Luo, H. Wu, and Z. C. Li, “NeuLFT: A novel approach to nonlinear canonical polyadic decomposition on highdimensional incomplete tensors,” IEEE Trans. Knowl. Data Eng., 2022, DOI: 10.1109/TKDE.2022.3176466.

[120] 
L. Chen and X. Luo, “Tensor distribution regression based on the 3D conventional neural networks,” IEEE/CAA J. Autom. Sinica, 2022, DOI: 10.1109/JAS.2022.123591.

[121] 
W. J. Qin, H. L. Wang, F. Zhang, J. J. Wang, X. Luo, and T. W. Huang, “Lowrank highorder tensor completion with applications in visual data,” IEEE Trans. Image Process., vol. 31, pp. 2433–2448, Mar. 2022. doi: 10.1109/TIP.2022.3155949

[122] 
X. Luo, M. Z. Chen, H. Wu, Z. G. Liu, H. Q. Yuan, and M. C. Zhou, “Adjusting learning depth in nonnegative latent factorization of tensors for accurately modeling temporal patterns in dynamic QoS data,” IEEE Trans. Autom. Sci. Eng., vol. 18, no. 4, pp. 2142–2155, Oct. 2021. doi: 10.1109/TASE.2020.3040400

[123] 
H. Wu, X. Luo, and M. C. Zhou, “Advancing nonnegative latent factorization of tensors with diversified regularization schemes,” IEEE Trans. Serv. Comput., vol. 15, no. 3, pp. 1334–1344, May–Jun. 2022. doi: 10.1109/TSC.2020.2988760

[124] 
H. Wu, X. Luo, M. C. Zhou, M. J. Rawa, K. Sedraoui, and A. Albeshri, “A PIDincorporated latent factorization of tensors approach to dynamically weighted directed network analysis,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 3, pp. 533–546, Mar. 2022. doi: 10.1109/JAS.2021.1004308

[125] 
X. Luo, H. Wu, H. Q. Yuan, and M. C. Zhou, “Temporal patternaware QoS prediction via biased nonnegative latent factorization of tensors,” IEEE Trans. Cybern., vol. 50, no. 5, pp. 1798–1809, May 2020. doi: 10.1109/TCYB.2019.2903736

[126] 
M. Z. Chen, C. L. He, and X. Luo, “MNL: A highlyefficient model for largescale dynamic weighted directed network representation,” IEEE Trans. Big Data, 2022, DOI: 10.1109/TBDATA.2022.3218064.

[127] 
D. Wu and X. Luo, “Robust latent factor analysis for precise representation of highdimensional and sparse data,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 4, pp. 796–805, Apr. 2021. doi: 10.1109/JAS.2020.1003533

[128] 
M. S. Shang, X. Luo, Z. G. Liu, J. Chen, Y. Yuan, and M. C. Zhou, “Randomized latent factor model for highdimensional and sparse matrices from industrial applications,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 131–141, Jan. 2019. doi: 10.1109/JAS.2018.7511189

[129] 
A. H. Khan, X. W. Cao, S. Li, V. N. Katsikis, and L. F. Liao, “BASADAM: An ADAM based approach to improve the performance of beetle antennae search optimizer,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 461–471, Mar. 2020. doi: 10.1109/JAS.2020.1003048

[130] 
C. C. Leng, H. Zhang, G. R. Cai, I. Cheng, and A. Basu, “Graph regularized L _{p} smooth nonnegative matrix factorization for data representation,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 2, pp. 584–595, Mar. 2019. doi: 10.1109/JAS.2019.1911417

[131] 
N. X. Yu, R. Yang, and M. J. Huang, “Deep common spatial pattern based motor imagery classification with improved objective function,” Int. J. Netw. Dyn. Intell., vol. 1, no. 1, pp. 73–84, Dec. 2022.

[132] 
E. R. Pinto, E. G. Nepomuceno, and A. S. L. O. Campanharo, “Campanharo.Individualbased modelling of animal brucellosis spread with the use of complex networks,” Int. J. Netw. Dyn. Intell., vol. 1, no. 1, pp. 120–129, Dec. 2022.

[133] 
M. M. Hassan, G. Fortino, L. T. Yang, H. Jiang, K. K. R. Choo, J. Zhang, and F.Y. Wang, “Guest editorial for special issue on blockchain for InternetofThings and cyberphysical systems,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 12, p. 1867, Dec. 2021. doi: 10.1109/JAS.2021.1004219

[134] 
S. K. Dwivedi, R. Amin, and S. Vollala, “Blockchainbased secured IPFSenable event storage technique with authentication protocol in VANET,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 12, pp. 1913–1922, Dec. 2021. doi: 10.1109/JAS.2021.1004225

[135] 
D. L. Xu, W. Shi, W. S. Zhai, and Z. H. Tian, “Multicandidate voting model based on blockchain,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 12, pp. 1891–1900, Dec. 2021. doi: 10.1109/JAS.2021.1004207

[136] 
Mamta, B. B. Gupta, K. C. Li, V. C. M. Leung, K. E. Psannis, and S. Yamaguchi, “Blockchainassisted secure finegrained searchable encryption for a cloudbased healthcare cyberphysical system,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 12, pp. 1877–1890, Dec. 2021. doi: 10.1109/JAS.2021.1004003

[137] 
Y. Zhang, M. C. Zhou, C. X. Li, and A. Abusorrah, “Dynamic evolutionary gamebased modeling, analysis and performance enhancement of blockchain channels,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 1, pp. 188–202, Jan. 2023. doi: 10.1109/JAS.2022.105911
