IEEE/CAA Journal of Automatica Sinica
Citation: | Q. Xu, Z. Fu, B. Zou, H. Z. Liu, and L. Wang, “Push-sum based algorithm for constrained convex optimization problem and its potential application in smart grid,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 10, pp. 1889–1891, Oct. 2022. doi: 10.1109/JAS.2022.105890 |
[1] |
Y. Zhu, W. Yu, G. Wen, and W. Ren, “Continuous-time coordination algorithm for distributed convex optimization over weight-unbalanced directed networks,” IEEE Trans. Circuits Syst Ⅱ: Exp Briefs, vol. 66, no. 7, pp. 1202–1206, 2019. doi: 10.1109/TCSII.2018.2878250
|
[2] |
Q. Liu and J. Wang, “A second-order multi-agent network for bound-constrained distributed optimization,” IEEE Trans. Autom. Control, vol. 60, no. 12, pp. 3310–3315, 2015. doi: 10.1109/TAC.2015.2416927
|
[3] |
P. Lin, W. Ren, and J. A. Farrell, “Distributed continuous-time optimization: Nonuniform gradient gains, finite-time convergence, and convex constraint set,” IEEE Trans. Autom. Control, vol. 62, no. 5, pp. 2239–2253, 2017. doi: 10.1109/TAC.2016.2604324
|
[4] |
P. Yi, Y. Hong, and F. Liu, “Distributed gradient algorithm for constrained optimization with application to load sharing in power systems,” Syst. Control Lett., vol. 83, pp. 45–52, 2015. doi: 10.1016/j.sysconle.2015.06.006
|
[5] |
S. Yang, Q. Liu, and J. Wang, “A multi-agent system with a proportional-integral protocol for distributed constrained optimization,” IEEE Trans. Autom. Control, vol. 62, no. 7, pp. 3461–3467, 2017. doi: 10.1109/TAC.2016.2610945
|
[6] |
A. Nedić and A. Ozdaglar, “Distributed subgradient methods for multi-agent optimization,” IEEE Trans. Autom. Control, vol. 54, no. 1, pp. 48–61, 2009. doi: 10.1109/TAC.2008.2009515
|
[7] |
A. Nedić, A. Ozdaglar, and A. Parrilo, “Constrained consensus and optimization in multi-agent networks,” IEEE Trans. Autom. Control, vol. 55, no. 4, pp. 922–938, 2010. doi: 10.1109/TAC.2010.2041686
|
[8] |
M. Zhu and S. Martínez, “On distributed convex optimization under inequality and equality constraints,” IEEE Trans. Autom. Control, vol. 57, no. 1, pp. 151–164, 2012. doi: 10.1109/TAC.2011.2167817
|
[9] |
J. Lei, H.-F. Chen, and H.-T. Fang, “Primal-dual algorithm for distributed constrained optimization,” Syst. Control Lett., vol. 96, pp. 110–117, 2016. doi: 10.1016/j.sysconle.2016.07.009
|
[10] |
V. Mai and E. Abed, “Distributed optimization over directed graphs with row stochasticity and constraint regularity,” Automatica, vol. 102, pp. 94–104, 2019. doi: 10.1016/j.automatica.2018.07.020
|
[11] |
H. Liu, W. X. Zheng, and W. Yu, “Distributed discrete-time algorithms for convex optimization with general local constraints on weight-unbalanced digraph,” IEEE Trans. Control Netw. Syst., vol. 8, no. 1, pp. 51–64, 2021. doi: 10.1109/TCNS.2020.3029996
|
[12] |
A. Nedić and A. Olshevsky, “Distributed optimization over time-varying directed graphs,” IEEE Trans. Autom. Control, vol. 60, no. 3, pp. 601–615, 2015. doi: 10.1109/TAC.2014.2364096
|
[13] |
A. Nedić, A. Ozdaglar, and W. Shi, “Achieving geometric convergence for distributed optimization over time-varying graphs,” SIAM J. Optim., vol. 27, no. 4, pp. 2597–2633, 2017. doi: 10.1137/16M1084316
|
[14] |
G. Qu and N. Li, “Harnessing smoothness to accelerate distributed optimization,” IEEE Trans. Control Netw. Syst., vol. 5, no. 3, pp. 1245–1260, 2018. doi: 10.1109/TCNS.2017.2698261
|
[15] |
C. Xi, V. S. Mai, R. Xin, E. H. Abed, and U. A. Khan, “Linear convergence in optimization over directed graphs with row-stochastic matrices,” IEEE Trans. Autom. Control, vol. 63, no. 10, pp. 3558–3565, 2018. doi: 10.1109/TAC.2018.2797164
|
[16] |
F. Saadatniaki, R. Xin, and U. A. Khan, “Decentralized optimization over time-varying directed graphs with row and column-stochastic matrices,” IEEE Trans. Autom. Control, vol. 65, no. 11, pp. 4769–4780, 2020. doi: 10.1109/TAC.2020.2969721
|
[17] |
S. Liang, L. Y. Wang, and G. Yin, “Dual averaging push for distributed convex optimization over time-varying directed graph,” IEEE Trans. Autom. Control, vol. 65, no. 4, pp. 1785–1791, 2020. doi: 10.1109/TAC.2019.2934216
|
JAS-2022-0503-supp.pdf |