A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 9 Issue 10
Oct.  2022

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Q. Xu, Z. Fu, B. Zou, H. Z. Liu, and L. Wang, “Push-sum based algorithm for constrained convex optimization problem and its potential application in smart grid,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 10, pp. 1889–1891, Oct. 2022. doi: 10.1109/JAS.2022.105890
Citation: Q. Xu, Z. Fu, B. Zou, H. Z. Liu, and L. Wang, “Push-sum based algorithm for constrained convex optimization problem and its potential application in smart grid,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 10, pp. 1889–1891, Oct. 2022. doi: 10.1109/JAS.2022.105890

Push-Sum Based Algorithm for Constrained Convex Optimization Problem and Its Potential Application in Smart Grid

doi: 10.1109/JAS.2022.105890
More Information
  • loading
  • [1]
    Y. Zhu, W. Yu, G. Wen, and W. Ren, “Continuous-time coordination algorithm for distributed convex optimization over weight-unbalanced directed networks,” IEEE Trans. Circuits Syst Ⅱ: Exp Briefs, vol. 66, no. 7, pp. 1202–1206, 2019. doi: 10.1109/TCSII.2018.2878250
    [2]
    Q. Liu and J. Wang, “A second-order multi-agent network for bound-constrained distributed optimization,” IEEE Trans. Autom. Control, vol. 60, no. 12, pp. 3310–3315, 2015. doi: 10.1109/TAC.2015.2416927
    [3]
    P. Lin, W. Ren, and J. A. Farrell, “Distributed continuous-time optimization: Nonuniform gradient gains, finite-time convergence, and convex constraint set,” IEEE Trans. Autom. Control, vol. 62, no. 5, pp. 2239–2253, 2017. doi: 10.1109/TAC.2016.2604324
    [4]
    P. Yi, Y. Hong, and F. Liu, “Distributed gradient algorithm for constrained optimization with application to load sharing in power systems,” Syst. Control Lett., vol. 83, pp. 45–52, 2015. doi: 10.1016/j.sysconle.2015.06.006
    [5]
    S. Yang, Q. Liu, and J. Wang, “A multi-agent system with a proportional-integral protocol for distributed constrained optimization,” IEEE Trans. Autom. Control, vol. 62, no. 7, pp. 3461–3467, 2017. doi: 10.1109/TAC.2016.2610945
    [6]
    A. Nedić and A. Ozdaglar, “Distributed subgradient methods for multi-agent optimization,” IEEE Trans. Autom. Control, vol. 54, no. 1, pp. 48–61, 2009. doi: 10.1109/TAC.2008.2009515
    [7]
    A. Nedić, A. Ozdaglar, and A. Parrilo, “Constrained consensus and optimization in multi-agent networks,” IEEE Trans. Autom. Control, vol. 55, no. 4, pp. 922–938, 2010. doi: 10.1109/TAC.2010.2041686
    [8]
    M. Zhu and S. Martínez, “On distributed convex optimization under inequality and equality constraints,” IEEE Trans. Autom. Control, vol. 57, no. 1, pp. 151–164, 2012. doi: 10.1109/TAC.2011.2167817
    [9]
    J. Lei, H.-F. Chen, and H.-T. Fang, “Primal-dual algorithm for distributed constrained optimization,” Syst. Control Lett., vol. 96, pp. 110–117, 2016. doi: 10.1016/j.sysconle.2016.07.009
    [10]
    V. Mai and E. Abed, “Distributed optimization over directed graphs with row stochasticity and constraint regularity,” Automatica, vol. 102, pp. 94–104, 2019. doi: 10.1016/j.automatica.2018.07.020
    [11]
    H. Liu, W. X. Zheng, and W. Yu, “Distributed discrete-time algorithms for convex optimization with general local constraints on weight-unbalanced digraph,” IEEE Trans. Control Netw. Syst., vol. 8, no. 1, pp. 51–64, 2021. doi: 10.1109/TCNS.2020.3029996
    [12]
    A. Nedić and A. Olshevsky, “Distributed optimization over time-varying directed graphs,” IEEE Trans. Autom. Control, vol. 60, no. 3, pp. 601–615, 2015. doi: 10.1109/TAC.2014.2364096
    [13]
    A. Nedić, A. Ozdaglar, and W. Shi, “Achieving geometric convergence for distributed optimization over time-varying graphs,” SIAM J. Optim., vol. 27, no. 4, pp. 2597–2633, 2017. doi: 10.1137/16M1084316
    [14]
    G. Qu and N. Li, “Harnessing smoothness to accelerate distributed optimization,” IEEE Trans. Control Netw. Syst., vol. 5, no. 3, pp. 1245–1260, 2018. doi: 10.1109/TCNS.2017.2698261
    [15]
    C. Xi, V. S. Mai, R. Xin, E. H. Abed, and U. A. Khan, “Linear convergence in optimization over directed graphs with row-stochastic matrices,” IEEE Trans. Autom. Control, vol. 63, no. 10, pp. 3558–3565, 2018. doi: 10.1109/TAC.2018.2797164
    [16]
    F. Saadatniaki, R. Xin, and U. A. Khan, “Decentralized optimization over time-varying directed graphs with row and column-stochastic matrices,” IEEE Trans. Autom. Control, vol. 65, no. 11, pp. 4769–4780, 2020. doi: 10.1109/TAC.2020.2969721
    [17]
    S. Liang, L. Y. Wang, and G. Yin, “Dual averaging push for distributed convex optimization over time-varying directed graph,” IEEE Trans. Autom. Control, vol. 65, no. 4, pp. 1785–1791, 2020. doi: 10.1109/TAC.2019.2934216
  • JAS-2022-0503-supp.pdf

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (222) PDF downloads(41) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return