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Proof 1: From the iterative rule (2d), we have
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Then, we will further bound all terms in its right-hand side of (2).

For the second term, we can further deduce that
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Moreover, since the projection operator is non-expansive, we can

deduce that
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(1 Next, we will confirm the bound for the third term. Since the pro-
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Therefore, based on (5), we can get
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Furthermore, from (4) and [11, Lemma 1], it has lim x;(r+1)—
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Specially, we assume Ry = 0 for simplicity, which has no effect on
the whole analysis. Noting that

28(NF(r) = s* lllxi(r + 1) =5l
< i (M) = 5™ + i (r) (8)

0<l< <l, r=Ry. @)

we have

I
s (55 OIP=2150) =5 i+ D=5

<—BOUFT) = 5Ol + (@ OIFE) = s* 12 + g () (9)
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Also, we have
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Therefore, by combining (4), (10) and (11) with (3) together, we
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Furthermore, it has |N|(r)| + IN2(r)| = n, ¥r € R, and thus it has n



