IEEE/CAA Journal of Automatica Sinica
Citation:  Hongbo Zhao, Yongming Wen, Sentang Wu, and Jia Deng, "Dynamic Evaluation Strategies for Multiple Aircrafts Formation Using Collision and Matching Probabilities," IEEE/CAA J. Autom. Sinica, vol. 8, no. 4, pp. 890904, Apr. 2021. doi: 10.1109/JAS.2020.1003198 
[1] 
S. T. Wu, Cooperative Guidance & Control of Missile Autonomous Formation. Beijing: National Defense Industry Press, 2015.

[2] 
S. T. Wu, Cooperative Flight Control System. Beijing: Science Press, Jun. 2018.

[3] 
W. Zha, J. Chen, and Z. Peng, “Dynamic multiteam antagonistic games model with incomplete information and its application to multiUAV,” IEEE/CAA J. Autom. Sinica, vol. 2, no. 1, pp. 74–84, Jan. 2015. doi: 10.1109/JAS.2015.7032908

[4] 
Y. Hong, J. Hu, and L. Gao, “Tracking control for multiagent consensus with an active leader and variable topology,” Automatica, vol. 42, no. 7, pp. 1177–1182, 2007.

[5] 
X. Zhang, X. Liu, and Z. Feng, “Distributed containment control of singular heterogeneous multiagent systems,” J. Franklin InstituteEngineering and Applied Mathematics, vol. 357, no. 3, pp. 1378–1399, 2020.

[6] 
Q. Ali and S. Montenegro, “Explicit model following distributed control scheme for formation flying of mini UAVs,” IEEE Access, vol. 4, pp. 397–406, 2016. doi: 10.1109/ACCESS.2016.2517203

[7] 
P. K. C. Wang, “Navigation strategies for multiple autonomous mobile robots moving in formation,” J. Robot. Syst., vol. 8, pp. 177–195, 1991.

[8] 
W. Ni and D. Cheng, “Leaderfollowing consensus of multiagent systems under fixed and switching topologies,” Syst. Control Lett., vol. 59, no. 3–4, pp. 209–217, 2010.

[9] 
G. Notarstefano, M. Egerstedt, and M. Haque, “Containment in leaderfollower networks with switching communication topologies,” Automatica, vol. 47, no. 5, pp. 1035–1040, 2011. doi: 10.1016/j.automatica.2011.01.077

[10] 
D. Herrera, F. Roberti, M. Toibero, and R. Carelli, “Human interaction dynamics for its use in mobile robotics: Impedance control for leaderfollower formation,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 4, pp. 696–703, Oct. 2017. doi: 10.1109/JAS.2017.7510631

[11] 
M. A. Lewis and K. H. Tan, “High precision formation control of mobile robots using virtual structures,” Autonomous Robots, vol. 4, no. 4, pp. 387–403, 1997.

[12] 
N. Ganganath, C. T. Cheng, X. F. Wang, and C. Tse, “Communitybased informed agents selection for flocking with a virtual leader,” Int. J. Control Automation and Systems, vol. 15, pp. 394–403, Feb. 2017. doi: 10.1007/s1255501501704

[13] 
R. C. Arkin and T. Balch, “Behaviorbased formation control for multirobot teams,” IEEE Trans. Robot. Autom., vol. 14, pp. 926–939, 1998. doi: 10.1109/70.736776

[14] 
D. D. Xu, X. N. Zhang, Z. Q. Zhu, C. L. Chen, and P. Yang, “Behaviorbased formation control of swarm robots,” Mathematical Problems in Engineering, Article No. 2014. DOI: 10.1155/2014/205759

[15] 
G. Antonelli, F. Arrichiello, and S. Chiaverini, “Experiments of formation control with multirobot systems using the nullspacebased behavioral control,” IEEE Trans. Control Syst. Technol., vol. 17, no. 5, pp. 1173–1182, Apr. 2009. doi: 10.1109/TCST.2008.2004447

[16] 
C. Du, X. Liu, W. Ren, P. Lu, and H. Liu, “Finitetime consensus for linear multiagent systems via eventtriggered strategy without continuous communication,” IEEE Trans. Control of Network Systems, vol. 7, no. 1, Article No. 2020.

[17] 
Q. Liu, T. Zhou, S. Guo, Z. Wang, D. Wang, and W. Wang, “Distributed containment control of multiagent systems under asynchronous switching and stochastic disturbances,” IET Control Theory &Applications, vol. 13, no. 8, pp. 1105–1112, 2019.

[18] 
C. Huang, G. S. Zhai, and G. S. Xu, “Necessary and sufficient conditions for consensus in third order multiagent systems,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 6, pp. 1044–1053, Nov. 2018. doi: 10.1109/JAS.2018.7511222

[19] 
J. Jin and N. Gans, “Collisionfree formation and heading consensus of nonholonomic robots as a pose regulation problem,” Robotics and Autonomous Systems, vol. 95, pp. 25–36, 2017. doi: 10.1016/j.robot.2017.05.008

[20] 
P. Anton and T. Roberto, “A tutorial on modeling and analysis of dynamic social networks. Part II,” Annual Reviews in Control, vol. 45, pp. 166–190, Mar. 2018. doi: 10.1016/j.arcontrol.2018.03.005

[21] 
W. He and Y. Dong, “Adaptive fuzzy neural network control for a constrained robot using impedance learning,” IEEE Trans. Neural Networks and Learning Systems, vol. 29, no. 4, pp. 1174–1186, 2017.

[22] 
H. J. Gao, W. He, C. Zhou, and C. Y. Sun, “Neural network control of a twolink flexible robotic manipulator using assumed mode method,” IEEE Trans. Industrial Informatics, vol. 15, no. 2, pp. 755–765, 2018.

[23] 
Y. Wu and R. Lu, “Eventbased control for network systems via integral quadratic constraints,” IEEE Trans. Circuits and Systems I: Regular Papers, vol. 65, no. 4, pp. 1386–1394, 2018.

[24] 
Y. Wu, R. Lu, P. Shi, H. Su, and Z. Wu, “Sampleddata synchronization of complex networks with partial couplings and TS fuzzy nodes,” IEEE Trans. Fuzzy Systems, vol. 26, no. 2, pp. 782–793, Apr. 2018. doi: 10.1109/TFUZZ.2017.2688490

[25] 
A. Wang, X. Liao, and H. He, “Eventtriggered differentially private average consensus for multiagent network,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 75–83, Jan. 2019. doi: 10.1109/JAS.2019.1911327

[26] 
C. Viel, S. Bertrand, M. Kieffer, and H. PietLahanier, “Distributed eventtriggered control strategies for multiagent formation stabilization and tracking,” Automatica, vol. 106, pp. 110–116, 2019. doi: 10.1016/j.automatica.2019.04.024

[27] 
X.X. Yang, M. Lei, S.L. Zhou, and G.Y. Yin, “Complex formation control of largescale intelligent autonomous vehicles,” Mathematical Problems in Engineering, vol. 2012, no. 6, Article No. 2012. doi: 10.1155/2012/241916

[28] 
D. B. Wilson, A. H. Goktogan, and S. Sukkarieh, “Visionaided guidance and navigation for close formation flight,” J. Field Robotics, vol. 33, pp. 661–686, Aug. 2016. doi: 10.1002/rob.21637

[29] 
D. Li, S. S. Ge, W. He, G. Ma, and L. Xie, “Multilayer formation control of multiagent systems,” Automatica, vol. 109, Article No. 2019.

[30] 
H. Liu, Y. Tian, F. L. Lewis, Y. Wan, and K. P. Valavanis, “Robust formation tracking control for multiple quadrotors under aggressive maneuvers,” Automatica, vol. 105, pp. 179–185, 2019. doi: 10.1016/j.automatica.2019.03.024

[31] 
Q. Wang, Y. Wang, and H. Zhang, “The formation control of multiagent systems on a circle,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 148–154, Jan. 2018. doi: 10.1109/JAS.2016.7510022

[32] 
P. Gurfil and E. Kivelevitch, “Flock properties effect on task assignment and formation flying of cooperating unmanned aerial vehicles,” Proc. the Institution of Mechanical Engineers Part GJ. Aerospace Engineering, vol. 221, pp. 401–418, Jun. 2007. doi: 10.1243/09544100JAERO120

[33] 
G. Dudek, M. R. M. Jenkin, E. Milios, and D. Wilkes, “A taxonomy for multiagent robotics,” Autonomous Robots, vol. 3, pp. 375–397, 1996.

[34] 
R. OlfatiSaber, “Flocking for multiagent dynamic systems: Algorithms and theory,” IEEE Trans. Automatic Control, vol. 51, pp. 401–420, Mar. 2006. doi: 10.1109/TAC.2005.864190

[35] 
Q. Yuan, J. Zhan, and X. Li, “Outdoor flocking of quadcopter drones with decentralized model predictive control,” ISA Transactions, vol. 71, no. 1, pp. 84–92, 2017.

[36] 
M. Khalili, X. Zhang, M. A. Gilson, and Y. Cao, “Distributed faulttolerant formation control of cooperative mobile robots,” IFACPapersOnLine, vol. 51, no. 24, pp. 459–464, 2018. doi: 10.1016/j.ifacol.2018.09.617

[37] 
Z. Yao, S. T. Wu, and Y. M. Wen, “Formation generation for multiple unmanned vehicles using multiagent hybrid social cognitive optimization based on the internet of things,” Sensors (Basel,Switzerland)

[38] 
Y. Wen, S. Wu, W. Liu, J. Deng, and X. Wu, “A collision forecast and coordination algorithm in configuration control of missile autonomous formation,” IEEE Access, vol. 5, pp. 1188–1199, 2017. doi: 10.1109/ACCESS.2017.2652984

[39] 
H. Zhao, S. Wu, Y. Wen, W. Liu, and X. Wu, “Modeling and flight experiments for swarms of high dynamic UAVs: A stochastic configuration control system with multiplicative noises,” Sensors, vol. 19, Article No. 2019.

[40] 
C. W. Reynolds, “Flocks, herds, and schools: A distributed behavioral model,” ACM SIGGRAPH Computer Graphics, vol. 21, no. 4, pp. 25–34, 1987. doi: 10.1145/37402.37406

[41] 
Y. Q. Zhou, Stochastic Processes Theory. Beijing: Beihang University Press, 2013.
