Volume 12
Issue 10
IEEE/CAA Journal of Automatica Sinica
| Citation: | H. Xiao, X. Lai, Q. Meng, J. She, E. F. Fukushima, and M. Wu, “Comprehensive dynamic model of vertical pneumatic bellows actuator system considering bidirectional asymmetric hysteresis,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 10, pp. 2115–2126, Oct. 2025. doi: 10.1109/JAS.2025.125162 |
| [1] |
F. Xu and H. Wang, “Soft robotics: Morphology and morphology-inspired motion strategy,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 9, pp. 1500–1522, Sep. 2021. doi: 10.1109/JAS.2021.1004105
|
| [2] |
Z. Li, Z. Li, H. Xu, X. Zhang, and C.-Y. Su, “Development of a butterfly fractional-order backlash-like hysteresis model for dielectric elastomer actuators,” IEEE Trans. Ind. Electron., vol. 70, no. 2, pp. 1794–1801, Feb. 2023. doi: 10.1109/TIE.2022.3163553
|
| [3] |
J. Wu, W. Ye, Y. Wang, and C.-Y. Su, “Modeling of photo-responsive liquid crystal elastomer actuators,” Inf. Sci., vol. 560, pp. 441–455, Jun. 2021. doi: 10.1016/j.ins.2021.01.009
|
| [4] |
Q. Xie, T. Wang, and S. Zhu, “Simplified dynamical model and experimental verification of an underwater hydraulic soft robotic arm,” Smart Mater. Struct., vol. 31, no. 7, p. 075011, Jul. 2022. doi: 10.1088/1361-665X/ac736f
|
| [5] |
A. H. Khan, Z. Shao, S. Li, Q. Wang, and N. Guan, “Which is the best PID variant for pneumatic soft robots? An experimental study,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 451–460, Mar. 2020. doi: 10.1109/JAS.2020.1003045
|
| [6] |
Y. Zhang, H. Liu, T. Ma, L. Hao, and Z. Li, “A comprehensive dynamic model for pneumatic artificial muscles considering different input frequencies and mechanical loads,” Mech. Syst. Signal Process., vol. 148, p. 107133, Feb. 2021. doi: 10.1016/j.ymssp.2020.107133
|
| [7] |
J. Wu, W. Ye, Y. Wang, and C.-Y. Su, “Modeling based on a two-step parameter identification strategy for liquid crystal elastomer actuator considering dynamic phase transition process,” IEEE Trans. Cybern., vol. 53, no. 7, pp. 4423–4434, Jul. 2023. doi: 10.1109/TCYB.2022.3179433
|
| [8] |
J. Sun, W. Liao, and Z. Yang, “Additive manufacturing of liquid crystal elastomer actuators based on knitting technology,” Adv. Mater., vol. 35, no. 36, p. 2302706, Sep. 2023. doi: 10.1002/adma.202302706
|
| [9] |
Y. Zhang, Y. Wang, J. Wu, Q. Meng, and C.-Y. Su, “Adaptive control method for conically shaped dielectric elastomer actuator with different loads,” IEEE Trans. Autom. Sci. Eng., vol. 21, no. 3, pp. 2613–2621, Jul. 2024. doi: 10.1109/TASE.2023.3265707
|
| [10] |
G.-Y. Gu, U. Gupta, J. Zhu, L.-M. Zhu, and X. Zhu, “Modeling of viscoelastic electromechanical behavior in a soft dielectric elastomer actuator,” IEEE Trans. Robot., vol. 33, no. 5, pp. 1263–1271, Oct. 2017. doi: 10.1109/TRO.2017.2706285
|
| [11] |
J. Ciambella and G. Tomassetti, “A form-finding strategy for magneto-elastic actuators,” Int. J. Nonlinear Mech., vol. 119, p. 103297, Mar. 2020. doi: 10.1016/j.ijnonlinmec.2019.103297
|
| [12] |
D. Kumar, V. Yadav, and S. Sarangi, “Modeling and analysis of an electro-magneto-elastic rotating cylindrical tube actuator,” J. Intell. Mater. Syst. Struct., vol. 33, no. 14, pp. 1862–1876, Aug. 2022. doi: 10.1177/1045389X211072188
|
| [13] |
J. Shintake, V. Cacucciolo, D. Floreano, and H. Shea, “Soft robotic grippers,” Adv. Mater., vol. 30, no. 29, p. 1707035, Jul. 2018. doi: 10.1002/adma.201707035
|
| [14] |
S. Shakiba, M. Ourak, E. V. Poorten, M. Ayati, and A. Yousefi-Koma, “Modeling and compensation of asymmetric rate-dependent hysteresis of a miniature pneumatic artificial muscle-based catheter,” Mech. Syst. Signal Process., vol. 154, p. 107532, Jun. 2021. doi: 10.1016/j.ymssp.2020.107532
|
| [15] |
X. Wang, Q. Zhang, D. Shen, and J. Chen, “A novel rescue robot: Hybrid soft and rigid structures for narrow space searching,” in Proc. IEEE Int. Conf. Robotics and Biomimetics, Dali, China, 2019, pp. 2207–2213.
|
| [16] |
Y. Cao and J. Huang, “Neural-network-based nonlinear model predictive tracking control of a pneumatic muscle actuator-driven exoskeleton,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 6, pp. 1478–1488, Nov. 2020. doi: 10.1109/JAS.2020.1003351
|
| [17] |
X. Zhang, N. Sun, G. Liu, T. Yang, and Y. Fang, “Hysteresis compensation-based intelligent control for pneumatic artificial muscle-driven humanoid robot manipulators with experiments verification,” IEEE Trans. Autom. Sci. Eng., vol. 21, no. 3, pp. 2538–2551, Jul. 2024. doi: 10.1109/TASE.2023.3263535
|
| [18] |
H. Ru, J. Huang, W. Chen, and C. Xiong, “Modeling and identification of rate-dependent and asymmetric hysteresis of soft bending pneumatic actuator based on evolutionary firefly algorithm,” Mech. Mach. Theory, vol. 181, p. 105169, Mar. 2023. doi: 10.1016/j.mechmachtheory.2022.105169
|
| [19] |
S. Zhao, Z. Yan, Q. Meng, H. Xiao, X. Lai, and M. Wu, “Modified three-element modeling and robust tracking control for a planar pneumatic soft actuator,” IEEE Trans. Ind. Electron., vol. 70, no. 9, pp. 9237–9247, Sep. 2023. doi: 10.1109/TIE.2022.3206693
|
| [20] |
H. Xiao, J. Wu, W. Ye, and Y. Wang, “Dynamic modeling for dielectric elastomer actuators based on LSTM deep neural network,” in Proc. 5th Int. Conf. Advanced Robotics and Mechatronics, Shenzhen, China, 2020, pp. 119–124.
|
| [21] |
H. Ru, J. Huang, and B. Wang, “ESN-based control of bending pneumatic muscle with asymmetric and rate-dependent hysteresis,” in Proc. 4th Int. Conf. Neural Computing for Advanced Applications, Hefei, China, 2023, pp. 3–17.
|
| [22] |
M. A. Vasquez-Beltran, B. Jayawardhana, and R. F. Peletier, “Modeling and analysis of duhem hysteresis operators with butterfly loops,” IEEE Trans. Autom. Control, vol. 68, no. 10, pp. 5977–5990, Oct. 2023. doi: 10.1109/TAC.2023.3238177
|
| [23] |
M. Ismail, F. Ikhouane, and J. Rodellar, “The hysteresis bouc-wen model, a survey,” Arch. Comput. Methods Eng., vol. 16, no. 2, pp. 161–188, Jun. 2009. doi: 10.1007/s11831-009-9031-8
|
| [24] |
T. Kosaki and M. Sano, “Control of a parallel manipulator driven by pneumatic muscle actuators based on a hysteresis model,” J. Environ. Eng., vol. 6, no. 2, pp. 316–327, Mar. 2011. doi: 10.1299/jee.6.316
|
| [25] |
H. Xiao, Q. Meng, X. Lai, Y. Wang, J. She, E. F. Fukushima, and M. Wu, “Design, performance analysis and applications of pneumatic bellows actuator for building block soft robots,” Inf. Sci., vol. 676, p. 120814, Aug. 2024. doi: 10.1016/j.ins.2024.120814
|
| [26] |
Y. Yang, J. Han, Z. Liu, Z. Zhao, and K.-S. Hong, “Modeling and adaptive neural network control for a soft robotic arm with prescribed motion constraints,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 2, pp. 501–511, Feb. 2023. doi: 10.1109/JAS.2023.123213
|
| [27] |
H. Ru, Y. Yang, B. Wang, and J. Huang, “Model predictive control for a bending pneumatic muscle based on an online modified generalized prandtl-ishlinskii model,” Neural Comput. Appl., vol. 36, no. 20, pp. 12371–12383, Jul. 2024. doi: 10.1007/s00521-024-09666-2
|
| [28] |
M. Al Saaideh and M. Al Janaideh, “On prandtl-ishlinskii hysteresis modeling of a loaded pneumatic artificial muscle,” ASME Lett. Dyn. Syst. Control, vol. 2, no. 3, p. 031008, Jul. 2022. doi: 10.1115/1.4054779
|
| [29] |
K. Xu, Z. Zhang, and J. Mao, “Modeling of stress dependent hysteresis nonlinearity based on fuzzy tree for GMA,” in Proc. IEEE Int. Conf. Automation and Logistics, Qingdao, China, 2008, pp. 331–335.
|
| [30] |
X. Zhang, Y. Tan, M. Su, and Y. Xie, “Neural networks based identification and compensation of rate-dependent hysteresis in piezoelectric actuators,” Phys. B: Condens. Matter, vol. 405, no. 12, pp. 2687–2693, Jun. 2010. doi: 10.1016/j.physb.2010.03.050
|
| [31] |
P.-K. Wong, Q. Xu, C.-M. Vong, and H.-C. Wong, “Rate-dependent hysteresis modeling and control of a piezostage using online support vector machine and relevance vector machine,” IEEE Trans. Ind. Electron., vol. 59, no. 4, pp. 1988–2001, Apr. 2012. doi: 10.1109/TIE.2011.2166235
|
| [32] |
H. Xiao, Q.-X. Meng, X.-Z. Lai, Z. Yan, S.-Y. Zhao, and M. Wu, “Design and trajectory tracking control of a novel pneumatic bellows actuator,” Nonlinear Dyn., vol. 111, no. 4, pp. 3173–3190, Feb. 2023. doi: 10.1007/s11071-022-07979-2
|
| [33] |
Y. Zhang, J. Wu, P. Huang, C.-Y. Su, and Y. Wang, “Inverse dynamics modelling and tracking control of conical dielectric elastomer actuator based on GRU neural network,” Eng. Appl. Artif. Intell., vol. 118, p. 105668, Feb. 2023. doi: 10.1016/j.engappai.2022.105668
|
| [34] |
H. Xiao, J. Wu, W. Ye, and Y. Wang, “Dynamic modeling of dielectric elastomer actuators based on thermodynamic theory,” Mech. Adv. Mater. Struct., vol. 29, no. 11, pp. 1543–1552, Nov. 2022. doi: 10.1080/15376494.2020.1829757
|
| [35] |
S. Xie, J. Mei, H. Liu, and Y. Wang, “Hysteresis modeling and trajectory tracking control of the pneumatic muscle actuator using modified Prandtl-Ishlinskii model,” Mech. Mach. Theory, vol. 120, pp. 213–224, Feb. 2018. doi: 10.1016/j.mechmachtheory.2017.07.016
|
| [36] |
D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation,” PeerJ Comput. Sci., vol. 7, no. 3, p. e623, Jul. 2021.
|