Volume 12
Issue 10
IEEE/CAA Journal of Automatica Sinica
| Citation: | Y. Chen, D. Zhang, R. Yan, and M. Xie, “Applications of domain generalization to machine fault diagnosis: A survey,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 10, pp. 1963–1984, Oct. 2025. doi: 10.1109/JAS.2025.125120 |
| [1] |
S. Nandi, H. A. Toliyat, and X. Li, “Condition monitoring and fault diagnosis of electrical motors-a review,” IEEE Trans. Energy Convers., vol. 20, no. 4, pp. 719–729, Dec. 2005. doi: 10.1109/TEC.2005.847955
|
| [2] |
Z. Gao, C. Cecati, and S. X. Ding, “A survey of fault diagnosis and fault-tolerant techniques-part I: Fault diagnosis with model-based and signal-based approaches,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3757–3767, Jun. 2015. doi: 10.1109/TIE.2015.2417501
|
| [3] |
J. Ren, J. Wen, Z. Zhao, R. Yan, X. Chen, and A. K. Nandi, “Uncertainty-aware deep learning: A promising tool for trustworthy fault diagnosis,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 6, pp. 1317–1330, Jun. 2024. doi: 10.1109/JAS.2024.124290
|
| [4] |
Y. Lei, B. Yang, X. Jiang, F. Jia, N. Li, and A. K. Nandi, “Applications of machine learning to machine fault diagnosis: A review and roadmap,” Mech. Syst. Signal Process., vol. 138, p. 106587, Apr. 2020. doi: 10.1016/j.ymssp.2019.106587
|
| [5] |
J. Huang, Z. Li, and Z. Zhou, “A simple framework to generalized zero-shot learning for fault diagnosis of industrial processes,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 6, pp. 1504–1506, Jun. 2023. doi: 10.1109/JAS.2023.123426
|
| [6] |
A. White, A. Karimoddini, and M. Karimadini, “Resilient fault diagnosis under imperfect observations - a need for industry 4.0 era,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1279–1288, Sep. 2020. doi: 10.1109/JAS.2020.1003333
|
| [7] |
A. Glowacz, R. Tadeusiewicz, S. Legutko, W. Caesarendra, M. Irfan, H. Liu, F. Brumercik, M. Gutten, M. Sulowicz, J. A. Antonino Daviu, T. Sarkodie-Gyan, P. Fracz, A. Kumar, and J. Xiang, “Fault diagnosis of angle grinders and electric impact drills using acoustic signals,” Appl. Acoust., vol. 179, p. 108070, Aug. 2021. doi: 10.1016/j.apacoust.2021.108070
|
| [8] |
W. Li, H. Lan, J. Chen, K. Feng, and R. Huang, “WavCapsNet: An interpretable intelligent compound fault diagnosis method by backward tracking,” IEEE Trans. Instrum. Meas., vol. 72, p. 3517811, Jun. 2023.
|
| [9] |
B. Yang, Y. Lei, X. Li, N. Li, and A. K. Nandi, “Label recovery and trajectory designable network for transfer fault diagnosis of machines with incorrect annotation,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 4, pp. 932–945, Apr. 2024. doi: 10.1109/JAS.2023.124083
|
| [10] |
H. Wang, J. Xu, R. Yan, and R. X. Gao, “A new intelligent bearing fault diagnosis method using SDP representation and SE-CNN,” IEEE Trans. Instrum. Meas., vol. 69, no. 5, pp. 2377–2389, May 2020. doi: 10.1109/TIM.2019.2956332
|
| [11] |
G. Li, J. Wu, C. Deng, Z. Chen, and X. Shao, “Convolutional neural network-based Bayesian Gaussian mixture for intelligent fault diagnosis of rotating machinery,” IEEE Trans. Instrum. Meas., vol. 70, p. 3517410, May 2021.
|
| [12] |
D. Zhang, Y. Chen, F. Guo, H. R. Karimi, H. Dong, and Q. Xuan, “A new interpretable learning method for fault diagnosis of rolling bearings,” IEEE Trans. Instrum. Meas., vol. 70, p. 3507010, Dec. 2021.
|
| [13] |
J. Cheng, Y. Yang, N. Hu, Z. Cheng, and J. Cheng, “A noise reduction method based on adaptive weighted symplectic geometry decomposition and its application in early gear fault diagnosis,” Mech. Syst. Signal Process., vol. 149, p. 107351, Feb. 2021. doi: 10.1016/j.ymssp.2020.107351
|
| [14] |
G. Dong and J. Chen, “Noise resistant time frequency analysis and application in fault diagnosis of rolling element bearings,” Mech. Syst. Signal Process., vol. 33, pp. 212–236, Nov. 2012. doi: 10.1016/j.ymssp.2012.06.008
|
| [15] |
Z. Mo, J. Wang, H. Zhang, and Q. Miao, “Weighted cyclic harmonic-to-noise ratio for rolling element bearing fault diagnosis,” IEEE Trans. Instrum. Meas., vol. 69, no. 2, pp. 432–442, 2020. doi: 10.1109/TIM.2019.2903615
|
| [16] |
M. Wang, M. Xie, Y. Wang, and M. Chen, “A deep quality monitoring network for quality-related incipient faults,” IEEE Trans. Neural Networks Learn. Syst., vol. 36, no. 1, pp. 1507–1517, Jan. 2025. doi: 10.1109/TNNLS.2023.3322625
|
| [17] |
M. He and D. He, “Deep learning based approach for bearing fault diagnosis,” IEEE Trans. Ind. Appl., vol. 53, no. 3, pp. 3057–3065, May-Jun 2017. doi: 10.1109/TIA.2017.2661250
|
| [18] |
L. Wen, X. Li, L. Gao, and Y. Zhang, “A new convolutional neural network-based data-driven fault diagnosis method,” IEEE Trans. Ind. Electron., vol. 65, no. 7, pp. 5990–5998, Jul. 2018. doi: 10.1109/TIE.2017.2774777
|
| [19] |
A. Glowacz, “Ventilation diagnosis of minigrinders using thermal images,” Expert Syst. Appl., vol. 237, p. 121435, Mar. 2024. doi: 10.1016/j.eswa.2023.121435
|
| [20] |
T. Sorsa, H. N. Koivo, and H. Koivisto, “Neural networks in process fault diagnosis,” IEEE Trans. Syst. Man Cybern., vol. 21, no. 4, pp. 815–825, 1991. doi: 10.1109/21.108299
|
| [21] |
Y. Chen, D. Zhang, H. Ni, J. Cheng, and H. R. Karimi, “Multi-scale split dual calibration network with periodic information for interpretable fault diagnosis of rotating machinery,” Eng. Appl. Artif. Intell., vol. 123, p. 106181, Aug. 2023. doi: 10.1016/j.engappai.2023.106181
|
| [22] |
X. Xu, D. Cao, Y. Zhou, and J. Gao, “Application of neural network algorithm in fault diagnosis of mechanical intelligence,” Mech. Syst. Signal Process., vol. 141, p. 106625, Jul. 2020. doi: 10.1016/j.ymssp.2020.106625
|
| [23] |
J. Wang, L. Qiao, Y. Ye, and Y. Chen, “Fractional envelope analysis for rolling element bearing weak fault feature extraction,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 2, pp. 353–360, Apr. 2017. doi: 10.1109/JAS.2016.7510166
|
| [24] |
Z. Wang, Z. Wu, X. Li, H. Shao, T. Han, and M. Xie, “Attention-aware temporal-spatial graph neural network with multi-sensor information fusion for fault diagnosis,” Knowl. Based Syst., vol. 278, p. 110891, Oct. 2023. doi: 10.1016/j.knosys.2023.110891
|
| [25] |
W. Yu, C. Zhao, B. Huang, and M. Xie, “An unsupervised fault detection and diagnosis with distribution dissimilarity and lasso penalty,” IEEE Trans. Control Syst. Technol., vol. 32, no. 3, pp. 767–779, May 2024. doi: 10.1109/TCST.2023.3330443
|
| [26] |
Y. Lei, J. Lin, Z. He, and M. J. Zuo, “A review on empirical mode decomposition in fault diagnosis of rotating machinery,” Mech. Syst. Signal Process., vol. 35, no. 1–2, pp. 108–126, Feb. 2013. doi: 10.1016/j.ymssp.2012.09.015
|
| [27] |
T. Han, C. Liu, W. Yang, and D. Jiang, “A novel adversarial learning framework in deep convolutional neural network for intelligent diagnosis of mechanical faults,” Knowl. Based Syst., vol. 165, pp. 474–487, Feb. 2019. doi: 10.1016/j.knosys.2018.12.019
|
| [28] |
R. Wang, Z. Chen, and W. Li, “Gradient flow-based meta generative adversarial network for data augmentation in fault diagnosis,” Appl. Soft Comput., vol. 142, p. 110313, Jul. 2023. doi: 10.1016/j.asoc.2023.110313
|
| [29] |
R. Liu, B. Yang, E. Zio, and X. Chen, “Artificial intelligence for fault diagnosis of rotating machinery: A review,” Mech. Syst. Signal Process., vol. 108, pp. 33–47, Aug. 2018. doi: 10.1016/j.ymssp.2018.02.016
|
| [30] |
R. Yan, Z. Shang, H. Xu, J. Wen, Z. Zhao, X. Chen, and R. X. Gao, “Wavelet transform for rotary machine fault diagnosis: 10 years revisited,” Mech. Syst. Signal Process., vol. 200, p. 110545, Oct. 2023. doi: 10.1016/j.ymssp.2023.110545
|
| [31] |
T. Li, Z. Zhao, C. Sun, L. Cheng, X. Chen, R. Yan, and R. X. Gao, “WaveletKernelNet: An interpretable deep neural network for industrial intelligent diagnosis,” IEEE Trans. Syst. Man Cybern. Syst., vol. 52, no. 4, pp. 2302–2312, Apr. 2022. doi: 10.1109/TSMC.2020.3048950
|
| [32] |
K. Zhou, C. Yang, J. Liu, and Q. Xu, “Dynamic graph-based feature learning with few edges considering noisy samples for rotating machinery fault diagnosis,” IEEE Trans. Ind. Electron., vol. 69, no. 10, pp. 10595–10604, Oct. 2022. doi: 10.1109/TIE.2021.3121748
|
| [33] |
Y. Chen, D. Zhang, H. Zhang, and Q.-G. Wang, “Dual-path mixed-domain residual threshold networks for bearing fault diagnosis,” IEEE Trans. Ind. Electron., vol. 69, no. 12, pp. 13462–13472, Dec. 2022. doi: 10.1109/TIE.2022.3144572
|
| [34] |
Y. Song, Y. Li, L. Jia, and M. Qiu, “Retraining strategy-based domain adaption network for intelligent fault diagnosis,” IEEE Trans. Ind. Inf., vol. 16, no. 9, pp. 6163–6171, Sep. 2020. doi: 10.1109/TII.2019.2950667
|
| [35] |
Y. Chen, D. Zhang, and R. Yan, “Domain adaptation networks with parameter-free adaptively rectified linear units for fault diagnosis under variable operating conditions,” IEEE Trans. Neural Networks Learn. Syst., vol. 35, no. 11, pp. 16872–16885, Nov. 2024. doi: 10.1109/TNNLS.2023.3298648
|
| [36] |
Y. Li, Y. Ren, H. Zheng, Z. Deng, and S. Wang, “A novel cross-domain intelligent fault diagnosis method based on entropy features and transfer learning,” IEEE Trans. Instrum. Meas., vol. 70, p. 3526314, Oct. 2021.
|
| [37] |
X. Yu, Z. Zhao, X. Zhang, C. Sun, B. Gong, R. Yan, and X. Chen, “Conditional adversarial domain adaptation with discrimination embedding for locomotive fault diagnosis,” IEEE Trans. Instrum. Meas., vol. 70, p. 3503812, Oct. 2021.
|
| [38] |
Z. Zhao, Q. Zhang, X. Yu, C. Sun, S. Wang, R. Yan, and X. Chen, “Applications of unsupervised deep transfer learning to intelligent fault diagnosis: A survey and comparative study,” IEEE Trans. Instrum. Meas., vol. 70, p. 3525828, Sep. 2021.
|
| [39] |
X. Chen, R. Yang, Y. Xue, M. Huang, R. Ferrero, and Z. Wang, “Deep transfer learning for bearing fault diagnosis: A systematic review since 2016,” IEEE Trans. Instrum. Meas., vol. 72, p. 3508221, Feb. 2023.
|
| [40] |
X. Chen, X. Li, S. Yu, Y. Lei, N. Li, and B. Yang, “Dynamic vision enabled contactless cross-domain machine fault diagnosis with neuromorphic computing,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 3, pp. 788–790, Mar. 2024. doi: 10.1109/JAS.2023.124107
|
| [41] |
X. Chen, H. Shao, Y. Xiao, S. Yan, B. Cai, and B. Liu, “Collaborative fault diagnosis of rotating machinery via dual adversarial guided unsupervised multi-domain adaptation network,” Mech. Syst. Signal Process., vol. 198, p. 110427, Sep. 2023. doi: 10.1016/j.ymssp.2023.110427
|
| [42] |
Q. Qian, Y. Qin, J. Luo, and D. Xiao, “Cross-machine transfer fault diagnosis by ensemble weighting subdomain adaptation network,” IEEE Trans. Ind. Electron., vol. 70, no. 12, pp. 12773–12783, Dec. 2023.
|
| [43] |
Y. An, K. Zhang, Y. Chai, Q. Liu, and X. Huang, “Domain adaptation network base on contrastive learning for bearings fault diagnosis under variable working conditions,” Expert Syst. Appl., vol. 212, p. 118802, Feb. 2023. doi: 10.1016/j.eswa.2022.118802
|
| [44] |
Z. Zhu, G. Chen, and G. Tang, “Domain adaptation with multi-adversarial learning for open-set cross-domain intelligent bearing fault diagnosis,” IEEE Trans. Instrum. Meas., vol. 72, p. 3533411, Sep. 2023.
|
| [45] |
X. Yang, X. Yuan, T. Ye, W. Zhu, F. Zhou, and J. Jin, “PSNN-TADA: Prototype and stochastic neural network-based twice adversarial domain adaptation for fault diagnosis under varying working conditions,” IEEE Trans. Instrum. Meas., vol. 73, p. 3500212, Jan. 2024.
|
| [46] |
K. Sun, X. Xu, N. Lu, H. Xia, and M. Han, “Joint discriminative adversarial domain adaptation for cross-domain fault diagnosis,” IEEE Trans. Instrum. Meas., vol. 72, p. 3530911, Sep. 2023.
|
| [47] |
K. Zhao, Z. Liu, B. Zhao, and H. Shao, “Class-aware adversarial multiwavelet convolutional neural network for cross-domain fault diagnosis,” IEEE Trans. Ind. Inf., vol. 20, no. 3, pp. 4492–4503, Mar. 2024. doi: 10.1109/TII.2023.3316264
|
| [48] |
C. Wang, Z. Wang, L. Ma, H. Dong, and W. Sheng, “Subdomain-alignment data augmentation for pipeline fault diagnosis: An adversarial self-attention network,” IEEE Trans. Ind. Inf., vol. 20, no. 2, pp. 1374–1384, Feb. 2024. doi: 10.1109/TII.2023.3275701
|
| [49] |
X. Li, X.-D. Jia, W. Zhang, H. Ma, Z. Luo, and X. Li, “Intelligent cross-machine fault diagnosis approach with deep auto-encoder and domain adaptation,” Neurocomputing, vol. 383, pp. 235–247, Mar. 2020. doi: 10.1016/j.neucom.2019.12.033
|
| [50] |
Y. Chen, D. Zhang, K. Zhu, and R. Yan, “An adaptive activation transfer learning approach for fault diagnosis,” IEEE/ASME Trans. Mechatron., vol. 28, no. 5, pp. 2645–2656, Oct. 2023. doi: 10.1109/TMECH.2023.3243533
|
| [51] |
L. Guo, Y. Yu, Y. Liu, H. Gao, and T. Chen, “Reconstruction domain adaptation transfer network for partial transfer learning of machinery fault diagnostics,” IEEE Trans. Instrum. Meas., vol. 71, pp. 2502710, Nov. 2022.
|
| [52] |
J. Chen, J. Wang, J. Zhu, T. H. Lee, and C. W. de Silva, “Unsupervised cross-domain fault diagnosis using feature representation alignment networks for rotating machinery,” IEEE/ASME Trans. Mechatron., vol. 26, no. 5, pp. 2770–2781, Oct. 2021. doi: 10.1109/TMECH.2020.3046277
|
| [53] |
Z. Chen, G. He, J. Li, Y. Liao, K. Gryllias, and W. Li, “Domain adversarial transfer network for cross-domain fault diagnosis of rotary machinery,” IEEE Trans. Instrum. Meas., vol. 69, no. 11, pp. 8702–8712, Nov. 2020. doi: 10.1109/TIM.2020.2995441
|
| [54] |
Z.-H. Liu, B.-L. Lu, H.-L. Wei, L. Chen, X.-H. Li, and M. Rätsch, “Deep adversarial domain adaptation model for bearing fault diagnosis,” IEEE Trans. Syst. Man Cybern. Syst., vol. 51, no. 7, pp. 4217–4226, Jul. 2021. doi: 10.1109/TSMC.2019.2932000
|
| [55] |
Y. Wang, X. Sun, J. Li, and Y. Yang, “Intelligent fault diagnosis with deep adversarial domain adaptation,” IEEE Trans. Instrum. Meas., vol. 70, pp. 2503509, Nov. 2021.
|
| [56] |
Z. Chai and C. Zhao, “A fine-grained adversarial network method for cross-domain industrial fault diagnosis,” IEEE Trans. Autom. Sci. Eng., vol. 17, no. 3, pp. 1432–1442, Jul. 2020. doi: 10.1109/TASE.2019.2957232
|
| [57] |
Z. Wang, X. He, B. Yang, and N. Li, “Subdomain adaptation transfer learning network for fault diagnosis of roller bearings,” IEEE Trans. Ind. Electron., vol. 69, no. 8, pp. 8430–8439, Aug. 2022. doi: 10.1109/TIE.2021.3108726
|
| [58] |
J. Jiao, M. Zhao, J. Lin, and K. Liang, “Residual joint adaptation adversarial network for intelligent transfer fault diagnosis,” Mech. Syst. Signal Process., vol. 145, p. 106962, 2020. doi: 10.1016/j.ymssp.2020.106962
|
| [59] |
S. Li and J. Yu, “Deep transfer network with adaptive joint distribution adaptation: A new process fault diagnosis model,” IEEE Trans. Instrum. Meas., vol. 71, p. 3507813, Mar. 2022.
|
| [60] |
Y. Xiao, H. Shao, S. Y. Han, Z. Huo, and J. Wan, “Novel joint transfer network for unsupervised bearing fault diagnosis from simulation domain to experimental domain,” IEEE/ASME Trans. Mechatron., vol. 27, no. 6, pp. 5254–5263, Dec. 2022. doi: 10.1109/TMECH.2022.3177174
|
| [61] |
Y. Zhang, K. Yu, Z. Ren, and S. Zhou, “Joint domain alignment and class alignment method for cross-domain fault diagnosis of rotating machinery,” IEEE Trans. Instrum. Meas., vol. 70, p. 3526212, Oct. 2021.
|
| [62] |
H. Ren, J. Wang, J. Dai, Z. Zhu, and J. Liu, “Dynamic balanced domain-adversarial networks for cross-domain fault diagnosis of train bearings,” IEEE Trans. Instrum. Meas., vol. 71, p. 3514612, Jun. 2022.
|
| [63] |
Y. Li, Y. Dong, M. Xu, P. Liu, and R. Wang, “Instance weighting-based partial domain adaptation for intelligent fault diagnosis of rotating machinery,” IEEE Trans. Instrum. Meas., vol. 72, p. 3517114, May 2023.
|
| [64] |
W. Zhang, X. Li, H. Ma, Z. Luo, and X. Li, “Open-set domain adaptation in machinery fault diagnostics using instance-level weighted adversarial learning,” IEEE Trans. Ind. Inf., vol. 17, no. 11, pp. 7445–7455, Nov. 2021. doi: 10.1109/TII.2021.3054651
|
| [65] |
J. Tian, D. Han, H. R. Karimi, Y. Zhang, and P. Shi, “A universal multi-source domain adaptation method with unsupervised clustering for mechanical fault diagnosis under incomplete data,” Neural Networks, vol. 173, p. 106167, 2024. doi: 10.1016/j.neunet.2024.106167
|
| [66] |
B. Wang, L. Wen, X. Li, and L. Gao, “Adaptive class center generalization network: A sparse domain-regressive framework for bearing fault diagnosis under unknown working conditions,” IEEE Trans. Instrum. Meas., vol. 72, p. 3516511, May 2023.
|
| [67] |
S. Asutkar, C. Chalke, K. Shivgan, and S. Tallur, “TinyML-enabled edge implementation of transfer learning framework for domain generalization in machine fault diagnosis,” Expert Syst. Appl., vol. 213, p. 119016, Mar. 2023. doi: 10.1016/j.eswa.2022.119016
|
| [68] |
H. Zheng, R. Wang, Y. Yang, Y. Li, and M. Xu, “Intelligent fault identification based on multisource domain generalization towards actual diagnosis scenario,” IEEE Trans. Ind. Electron., vol. 67, no. 2, pp. 1293–1304, Feb. 2020. doi: 10.1109/TIE.2019.2898619
|
| [69] |
C. Zhao, E. Zio, and W. Shen, “Domain generalization for cross-domain fault diagnosis: An application-oriented perspective and a benchmark study,” Reliab. Eng. Syst. Saf., vol. 245, p. 109964, May 2024. doi: 10.1016/j.ress.2024.109964
|
| [70] |
C. Wang, Z. Wang, Q. Liu, H. Dong, and W. Sheng, “Support-sample-assisted domain generalization via attacks and defenses: Concepts, algorithms, and applications to pipeline fault diagnosis,” IEEE Trans. Ind. Inf., vol. 20, no. 4, pp. 6413–6423, Apr. 2024. doi: 10.1109/TII.2023.3337364
|
| [71] |
C. Liu, X. Ma, T. Han, X. Shi, C. Qin, and S. Hu, “NTScatNet: An interpretable convolutional neural network for domain generalization diagnosis across different transmission paths,” Measurement, vol. 204, p. 112041, Nov. 2022. doi: 10.1016/j.measurement.2022.112041
|
| [72] |
Z. Mo, Z. Zhang, Q. Miao, and K.-L. Tsui, “Sparsity-constrained invariant risk minimization for domain generalization with application to machinery fault diagnosis modeling,” IEEE Trans. Cybern., vol. 54, no. 3, pp. 1547–1559, Mar. 2024. doi: 10.1109/TCYB.2022.3223783
|
| [73] |
Z. Mo, Z. Zhang, and K.-L. Tsui, “Distance-aware risk minimization for domain generalization in machine fault diagnosis,” IEEE Internet Things J., vol. 11, no. 22, pp. 37287–37301, 2024. doi: 10.1109/JIOT.2024.3441253
|
| [74] |
M. Zhang, C. Huang, C. He, and J. Yang, “An end-to-end domain generalization fault diagnosis method based on adaptive weighted domain adversarial learning,” J. Phys. Conf. Ser., vol. 2694, p. 012042, Jan. 2024. doi: 10.1088/1742-6596/2694/1/012042
|
| [75] |
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Proc. 28th Int. Conf. Neural Information Processing Systems, Cambridge, USA, 2014, pp. 2672–2680.
|
| [76] |
R. Wang, W. Huang, M. Shi, J. Wang, C. Shen, and Z. Zhu, “Federated adversarial domain generalization network: A novel machinery fault diagnosis method with data privacy,” Knowl. Based Syst., vol. 256, p. 109880, Nov. 2022. doi: 10.1016/j.knosys.2022.109880
|
| [77] |
X. Miao, H. Zhao, B. Gao, and F. Song, “Corrosion leakage risk diagnosis of oil and gas pipelines based on semi-supervised domain generalization model,” Reliab. Eng. Syst. Saf., vol. 238, p. 109486, Dec. 2023. doi: 10.1016/j.ress.2023.109486
|
| [78] |
Q. Li, C. Shen, L. Chen, and Z. Zhu, “Knowledge mapping-based adversarial domain adaptation: A novel fault diagnosis method with high generalizability under variable working conditions,” Mech. Syst. Signal Process., vol. 147, p. 107095, Jan. 2021. doi: 10.1016/j.ymssp.2020.107095
|
| [79] |
Q. Zhang, Z. Zhao, X. Zhang, Y. Liu, C. Sun, M. Li, S. Wang, and X. Chen, “Conditional adversarial domain generalization with a single discriminator for bearing fault diagnosis,” IEEE Trans. Instrum. Meas., vol. 70, p. 3514515, Apr. 2021.
|
| [80] |
Q. Qian, J. Zhou, and Y. Qin, “Relationship transfer domain generalization network for rotating machinery fault diagnosis under different working conditions,” IEEE Trans. Ind. Inf., vol. 19, no. 9, pp. 9898–9908, Sep. 2023. doi: 10.1109/TII.2022.3232842
|
| [81] |
R. Huang, J. Li, Y. Liao, J. Chen, Z. Wang, and W. Li, “Deep adversarial capsule network for compound fault diagnosis of machinery toward multidomain generalization task,” IEEE Trans. Instrum. Meas., vol. 70, pp. 3506311, Dec. 2021.
|
| [82] |
X. Li, W. Zhang, H. Ma, Z. Luo, and X. Li, “Domain generalization in rotating machinery fault diagnostics using deep neural networks,” Neurocomputing, vol. 403, pp. 409–420, Aug. 2020. doi: 10.1016/j.neucom.2020.05.014
|
| [83] |
T. Han, Y.-F. Li, and M. Qian, “A hybrid generalization network for intelligent fault diagnosis of rotating machinery under unseen working conditions,” IEEE Trans. Instrum. Meas., vol. 70, p. 3520011, Jun. 2021.
|
| [84] |
Q. Qian, J. Luo, and Y. Qin, “Adaptive intermediate class-wise distribution alignment: A universal domain adaptation and generalization method for machine fault diagnosis,” IEEE Trans. Neural Networks Learn. Syst., vol. 36, no. 3, pp. 4296–4310, 2025. doi: 10.1109/TNNLS.2024.3376449
|
| [85] |
H. Zhang, M. Cissé, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond empirical risk minimization,” in Proc. 6th Int. Conf. Learning Representations, Vancouver, Canada, 2018.
|
| [86] |
Q. Li, L. Chen, L. Kong, D. Wang, M. Xia, and C. Shen, “Cross-domain augmentation diagnosis: An adversarial domain-augmented generalization method for fault diagnosis under unseen working conditions,” Reliab. Eng. Syst. Saf., vol. 234, p. 109171, 2023. doi: 10.1016/j.ress.2023.109171
|
| [87] |
Y. Shi, A. Deng, M. Deng, M. Xu, Y. Liu, X. Ding, and W. Bian, “Domain augmentation generalization network for real-time fault diagnosis under unseen working conditions,” Reliab. Eng. Syst. Saf., vol. 235, p. 109188, Jul. 2023. doi: 10.1016/j.ress.2023.109188
|
| [88] |
X. Wang, C. Wang, H. Liu, C. Zhang, Z. Fu, L. Ding, C. Bai, H. Zhang, and Y. Wei, “An adversarial single-domain generalization network for fault diagnosis of wind turbine gearboxes,” J. Mar. Sci. Eng., vol. 11, no. 12, p. 2384, Dec. 2023. doi: 10.3390/jmse11122384
|
| [89] |
C. Zhao and W. Shen, “Adversarial mutual information-guided single domain generalization network for intelligent fault diagnosis,” IEEE Trans. Ind. Inf., vol. 19, no. 3, pp. 2909–2918, May 2023. doi: 10.1109/TII.2022.3175018
|
| [90] |
C. Zhao and W. Shen, “A federated distillation domain generalization framework for machinery fault diagnosis with data privacy,” Eng. Appl. Artif. Intell., vol. 130, p. 107765, Apr. 2024. doi: 10.1016/j.engappai.2023.107765
|
| [91] |
L. Chen, Q. Li, C. Shen, J. Zhu, D. Wang, and M. Xia, “Adversarial domain-invariant generalization: A generic domain-regressive framework for bearing fault diagnosis under unseen conditions,” IEEE Trans. Ind. Inf., vol. 18, no. 3, pp. 1790–1800, Mar. 2022. doi: 10.1109/TII.2021.3078712
|
| [92] |
X. Huang and S. Belongie, “Arbitrary style transfer in real-time with adaptive instance normalization,” in Proc. IEEE Int. Conf. Computer Vision, Venice, Italy, 2017, pp. 1510–1519.
|
| [93] |
J. Wang, H. Ren, C. Shen, W. Huang, and Z. Zhu, “Multi-scale style generative and adversarial contrastive networks for single domain generalization fault diagnosis,” Reliab. Eng. Syst. Saf., vol. 243, p. 109879, Mar. 2024. doi: 10.1016/j.ress.2023.109879
|
| [94] |
R. Wang, W. Huang, Y. Lu, X. Zhang, J. Wang, C. Ding, and C. Shen, “A novel domain generalization network with multidomain specific auxiliary classifiers for machinery fault diagnosis under unseen working conditions,” Reliab. Eng. Syst. Saf., vol. 238, p. 109463, Oct. 2023. doi: 10.1016/j.ress.2023.109463
|
| [95] |
H. Huang, R. Wang, K. Zhou, L. Ning, and K. Song, “CausalViT: Domain generalization for chemical engineering process fault detection and diagnosis,” Process Saf. Environ. Prot., vol. 176, pp. 155–165, Aug. 2023. doi: 10.1016/j.psep.2023.06.018
|
| [96] |
Y. Liao, R. Huang, J. Li, Z. Chen, and W. Li, “Deep semisupervised domain generalization network for rotary machinery fault diagnosis under variable speed,” IEEE Trans. Instrum. Meas., vol. 69, no. 10, pp. 8064–8075, Oct. 2020.
|
| [97] |
X. Cong, Y. Song, Y. Li, and L. Jia, “Federated domain generalization with global robust model aggregation strategy for bearing fault diagnosis,” Meas. Sci. Technol., vol. 34, no. 11, p. 115116, Aug. 2023. doi: 10.1088/1361-6501/ace841
|
| [98] |
C. Zhao and W. Shen, “Adaptive open set domain generalization network: Learning to diagnose unknown faults under unknown working conditions,” Reliab. Eng. Syst. Saf., vol. 226, p. 108672, Oct. 2022. doi: 10.1016/j.ress.2022.108672
|
| [99] |
Y. Li, Y. Song, L. Jia, S. Gao, Q. Li, and M. Qiu, “Intelligent fault diagnosis by fusing domain adversarial training and maximum mean discrepancy via ensemble learning,” IEEE Trans. Ind. Inf., vol. 17, no. 4, pp. 2833–2841, Apr. 2021. doi: 10.1109/TII.2020.3008010
|
| [100] |
Q. Qian, Y. Qin, J. Luo, and S. Wang, “Partial transfer fault diagnosis by multiscale weight-selection adversarial network,” IEEE/ASME Trans. Mechatron., vol. 27, no. 6, pp. 4798–4806, Dec. 2022. doi: 10.1109/TMECH.2022.3166977
|
| [101] |
Z. Ye and J. Yu, “Deep negative correlation multisource domains adaptation network for machinery fault diagnosis under different working conditions,” IEEE/ASME Trans. Mechatron., vol. 27, no. 6, pp. 5914–5925, Dec. 2022. doi: 10.1109/TMECH.2022.3191051
|
| [102] |
C. Zhao and W. Shen, “A domain generalization network combing invariance and specificity towards real-time intelligent fault diagnosis,” Mech. Syst. Signal Process., vol. 173, p. 108990, Jul. 2022. doi: 10.1016/j.ymssp.2022.108990
|
| [103] |
Y. Ma, J. Yang, and L. Li, “Gradient aligned domain generalization with a mutual teaching teacher-student network for intelligent fault diagnosis,” Reliab. Eng. Syst. Saf., vol. 239, p. 109516, Nov. 2023. doi: 10.1016/j.ress.2023.109516
|
| [104] |
J. Li, C. Shen, L. Kong, D. Wang, M. Xia, and Z. Zhu, “A new adversarial domain generalization network based on class boundary feature detection for bearing fault diagnosis,” IEEE Trans. Instrum. Meas., vol. 71, p. 2506909, Apr. 2022.
|
| [105] |
C. Zhao and W. Shen, “Federated domain generalization: A secure and robust framework for intelligent fault diagnosis,” IEEE Trans. Ind. Inf., vol. 20, no. 2, pp. 2662–2670, Feb. 2024. doi: 10.1109/TII.2023.3296894
|
| [106] |
Y. Gao, J. Qi, Y. Sun, X. Hu, Z. Dong, and Y. Sun, “Industrial process fault diagnosis based on feature enhanced meta-learning toward domain generalization scenarios,” Knowl. Based Syst., vol. 289, p. 111506, Apr. 2024. doi: 10.1016/j.knosys.2024.111506
|
| [107] |
L. Ren, T. Mo, and X. Cheng, “Meta-learning based domain generalization framework for fault diagnosis with gradient aligning and semantic matching,” IEEE Trans. Ind. Inf., vol. 20, no. 1, pp. 754–764, Jan. 2024. doi: 10.1109/TII.2023.3264111
|
| [108] |
Y. Shi, A. Deng, M. Deng, J. Li, M. Xu, S. Zhang, X. Ding, and S. Xu, “Domain transferability-based deep domain generalization method towards actual fault diagnosis scenarios,” IEEE Trans. Ind. Inf., vol. 19, no. 6, pp. 7355–7366, Jun. 2023. doi: 10.1109/TII.2022.3210555
|
| [109] |
S. Pang, “Stacked maximum independence autoencoders: A domain generalization approach for fault diagnosis under various working conditions,” Mech. Syst. Signal Process., vol. 208, p. 111035, Feb. 2024. doi: 10.1016/j.ymssp.2023.111035
|
| [110] |
H. Wang, X. Bai, S. Wang, J. Tan, and C. Liu, “Generalization on unseen domains via model-agnostic learning for intelligent fault diagnosis,” IEEE Trans. Instrum. Meas., vol. 71, p. 3506411, Feb. 2022.
|
| [111] |
C. Zhao and W. Shen, “Imbalanced domain generalization via semantic-discriminative augmentation for intelligent fault diagnosis,” Adv. Eng. Inf., vol. 59, p. 102262, Jan. 2024. doi: 10.1016/j.aei.2023.102262
|
| [112] |
B. Schölkopf, F. Locatello, S. Bauer, N. R. Ke, N. Kalchbrenner, A. Goyal, and Y. Bengio, “Toward causal representation learning,” Proc. IEEE, vol. 109, no. 5, pp. 612–634, May 2021. doi: 10.1109/JPROC.2021.3058954
|
| [113] |
L. Jia, T. W. S. Chow, and Y. Yuan, “Causal disentanglement domain generalization for time-series signal fault diagnosis,” Neural Networks, vol. 172, p. 106099, Apr. 2024. doi: 10.1016/j.neunet.2024.106099
|
| [114] |
S. Jia, Y. Li, X. Wang, D. Sun, and Z. Deng, “Deep causal factorization network: A novel domain generalization method for cross-machine bearing fault diagnosis,” Mech. Syst. Signal Process., vol. 192, p. 110228, Jun. 2023. doi: 10.1016/j.ymssp.2023.110228
|
| [115] |
C. Guo, Z. Zhao, J. Ren, S. Wang, Y. Liu, and X. Chen, “Causal explaining guided domain generalization for rotating machinery intelligent fault diagnosis,” Expert Syst. Appl., vol. 243, p. 122806, Jun. 2024. doi: 10.1016/j.eswa.2023.122806
|
| [116] |
H. Ren, J. Wang, Z. Zhu, J. Shi, and W. Huang, “Domain fuzzy generalization networks for semi-supervised intelligent fault diagnosis under unseen working conditions,” Mech. Syst. Signal Process., vol. 200, p. 110579, Oct. 2023. doi: 10.1016/j.ymssp.2023.110579
|
| [117] |
B. Lu, Y. Zhang, Q. Sun, M. Li, and P. Li, “A novel multidomain contrastive-coding-based open-set domain generalization framework for machinery fault diagnosis,” IEEE Trans. Ind. Inf., vol. 20, no. 4, pp. 6369–6381, 2024. doi: 10.1109/TII.2023.3343735
|
| [118] |
M. Ragab, Z. Chen, W. Zhang, E. Eldele, M. Wu, C.-K. Kwoh, and X. Li, “Conditional contrastive domain generalization for fault diagnosis,” IEEE Trans. Instrum. Meas., vol. 71, p. 3506912, Feb. 2022.
|
| [119] |
C. Zhao, E. Zio, and W. Shen, “Multidomain class-imbalance generalization with fault relationship-induced augmentation for intelligent fault diagnosis,” IEEE Trans. Instrum. Meas., vol. 73, p. 3526311, Jul. 2024.
|
| [120] |
H. Zheng, Y. Yang, J. Yin, Y. Li, R. Wang, and M. Xu, “Deep domain generalization combining a priori diagnosis knowledge toward cross-domain fault diagnosis of rolling bearing,” IEEE Trans. Instrum. Meas., vol. 70, pp. 3501311, Jan. 2021.
|
| [121] |
Z. Fan, Q. Xu, C. Jiang, and S. X. Ding, “Deep mixed domain generalization network for intelligent fault diagnosis under unseen conditions,” IEEE Trans. Ind. Electron., vol. 71, no. 1, pp. 965–974, Jan. 2024. doi: 10.1109/TIE.2023.3243293
|
| [122] |
W. Zhang, C. Li, G. Peng, Y. Chen, and Z. Zhang, “A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load,” Mech. Syst. Signal Process., vol. 100, pp. 439–453, Feb. 2018. doi: 10.1016/j.ymssp.2017.06.022
|
| [123] |
H. Ren, J. Wang, W. Huang, X. Jiang, and Z. Zhu, “Domain-invariant feature fusion networks for semi-supervised generalization fault diagnosis,” Eng. Appl. Artif. Intell., vol. 126, p. 107117, Nov. 2023. doi: 10.1016/j.engappai.2023.107117
|
| [124] |
H. B. McMahan, E. Moore, D. Ramage, and B. A. Y. Arcas, “Federated learning of deep networks using model averaging,” arXiv preprint arXiv: 1602.05629, 2016.
|
| [125] |
Y. Song and P. Liu, “Federated domain generalization for intelligent fault diagnosis based on pseudo-siamese network and robust global model aggregation,” Int. J. Mach. Learn. Cybern., vol. 15, no. 2, pp. 685–696, Aug. 2024.
|
| [126] |
C. Zhao and W. Shen, “Mutual-assistance semisupervised domain generalization network for intelligent fault diagnosis under unseen working conditions,” Mech. Syst. Signal Process., vol. 189, p. 110074, Apr. 2023. doi: 10.1016/j.ymssp.2022.110074
|
| [127] |
J. Tian, Y. Jiang, J. Zhang, H. Luo, and S. Yin, “A novel data augmentation approach to fault diagnosis with class-imbalance problem,” Reliab. Eng. Syst. Saf., vol. 243, p. 109832, Mar. 2024. doi: 10.1016/j.ress.2023.109832
|
| [128] |
B. Lu, Z. Zhao, X. Gan, S. Liang, L. Fu, X. Wang, and C. Zhou, “Graph out-of-distribution generalization with controllable data augmentation,” IEEE Trans. Knowl. Data Eng., vol. 36, no. 11, pp. 6317–6329, 2024. doi: 10.1109/TKDE.2024.3393109
|
| [129] |
M. Wang, Y. Liu, J. Yuan, S. Wang, Z. Wang, and W. Wang, “Inter-class and inter-domain semantic augmentation for domain generalization,” IEEE Trans. Image Process., vol. 33, pp. 1338–1347, Jan. 2024. doi: 10.1109/TIP.2024.3354420
|
| [130] |
X. Luo, H. Wu, Z. Wang, J. Wang, and D. Meng, “A novel approach to large-scale dynamically weighted directed network representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 12, pp. 9756–9773, Dec. 2022. doi: 10.1109/TPAMI.2021.3132503
|
| [131] |
Y. Yuan, X. Luo, M. Shang, and Z. Wang, “A Kalman-filter-incorporated latent factor analysis model for temporally dynamic sparse data,” IEEE Trans. Cybern., vol. 53, no. 9, pp. 5788–5801, Sep. 2023. doi: 10.1109/TCYB.2022.3185117
|
| [132] |
X. Jiang, X. Li, Q. Wang, Q. Song, J. Liu, and Z. Zhu, “Multi-sensor data fusion-enabled semi-supervised optimal temperature-guided PCL framework for machinery fault diagnosis,” Inf. Fusion, vol. 101, p. 102005, Jan. 2024. doi: 10.1016/j.inffus.2023.102005
|
| [133] |
Z. Xu, X. Chen, Y. Li, and J. Xu, “Hybrid multimodal feature fusion with multi-sensor for bearing fault diagnosis,” Sensors, vol. 24, no. 6, p. 1792, Mar. 2024. doi: 10.3390/s24061792
|
| [134] |
X. Wang, X. Liu, and Y. Li, “An incremental model transfer method for complex process fault diagnosis,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 5, pp. 1268–1280, Sep. 2019. doi: 10.1109/JAS.2019.1911618
|
| [135] |
Y. Ge, F. Zhang, and Y. Ren, “Adaptive fault diagnosis method for rotating machinery with unknown faults under multiple working conditions,” J. Manuf. Syst., vol. 63, pp. 177–184, Apr. 2022. doi: 10.1016/j.jmsy.2022.03.009
|
| [136] |
Z. Wang, J. Yang, and Y. Guo, “Unknown fault feature extraction of rolling bearings under variable speed conditions based on statistical complexity measures,” Mech. Syst. Signal Process., vol. 172, p. 108964, Jun. 2022. doi: 10.1016/j.ymssp.2022.108964
|
| [137] |
C. Wang, J. Nie, P. Yin, J. Xu, S. Yu, and X. Ding, “Unknown fault detection of rolling bearings guided by global-local feature coupling,” Mech. Syst. Signal Process., vol. 213, p. 111331, May 2024. doi: 10.1016/j.ymssp.2024.111331
|