A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 10 Issue 5
May  2023

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Y. Zhou, X. Luo, and M. C. Zhou, “Cryptocurrency transaction network embedding from static and dynamic perspectives: An overview,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 5, pp. 1105–1121, May 2023. doi: 10.1109/JAS.2023.123450
Citation: Y. Zhou, X. Luo, and M. C. Zhou, “Cryptocurrency transaction network embedding from static and dynamic perspectives: An overview,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 5, pp. 1105–1121, May 2023. doi: 10.1109/JAS.2023.123450

Cryptocurrency Transaction Network Embedding From Static and Dynamic Perspectives: An Overview

doi: 10.1109/JAS.2023.123450
Funds:  This work was supported in part by the National Natural Science Foundation of China (62272078), the CAAI-Huawei MindSpore Open Fund (CAAIXSJLJJ-2021-035A), and the Doctoral Student Talent Training Program of Chongqing University of Posts and Telecommunications (BYJS202009)
More Information
  • Cryptocurrency, as a typical application scene of blockchain, has attracted broad interests from both industrial and academic communities. With its rapid development, the cryptocurrency transaction network embedding (CTNE) has become a hot topic. It embeds transaction nodes into low-dimensional feature space while effectively maintaining a network structure, thereby discovering desired patterns demonstrating involved users’ normal and abnormal behaviors. Based on a wide investigation into the state-of-the-art CTNE, this survey has made the following efforts: 1) categorizing recent progress of CTNE methods, 2) summarizing the publicly available cryptocurrency transaction network datasets, 3) evaluating several widely-adopted methods to show their performance in several typical evaluation protocols, and 4) discussing the future trends of CTNE. By doing so, it strives to provide a systematic and comprehensive overview of existing CTNE methods from static to dynamic perspectives, thereby promoting further research into this emerging and important field.

     

  • loading
  • [1]
    M. Saad, J. Choi, D. Nyang, J. Kim, and A. Mohaisen, “Toward characterizing blockchain-based cryptocurrencies for highly accurate predictions,” IEEE Syst. J., vol. 14, no. 1, pp. 321–332, Mar. 2020. doi: 10.1109/JSYST.2019.2927707
    [2]
    X. Han, Y. Yuan, and F.-Y. Wang, “A blockchain-based framework for central bank digital currency,” in Proc. IEEE Int. Conf. Service Operations and Logistics, and Informatics, Zhengzhou, China, 2019, pp. 263–268.
    [3]
    A. Ghosh, S. Gupta, A. Dua, and N. Kumar, “Security of cryptocurrencies in blockchain technology: State-of-art, challenges and future prospects,” J. Netw. Comput. Appl., vol. 163, p. 102635, Aug. 2020. doi: 10.1016/j.jnca.2020.102635
    [4]
    M. H. U. Rehman, K. Salah, E. Damiani, and D. Svetinovic, “Trust in blockchain cryptocurrency ecosystem,” IEEE Trans. Eng. Manage., vol. 67, no. 4, pp. 1196–1212, Nov. 2020. doi: 10.1109/TEM.2019.2948861
    [5]
    J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W. Felten, “SoK: Research perspectives and challenges for bitcoin and cryptocurrencies,” in Proc. IEEE Symp. Security and Privacy, San Jose, USA, 2015, pp. 104–121.
    [6]
    S. Dustdar, Fernández, J. M. García, and A. Ruiz-Cortés, “Elastic smart contracts in blockchains,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 12, pp. 1901–1912, Dec. 2021. doi: 10.1109/JAS.2021.1004222
    [7]
    H. M. Lu, Y. Tang, and Y. Sun, “DRRS-BC: Decentralized routing registration system based on blockchain,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 12, pp. 1868–1876, Dec. 2021. doi: 10.1109/JAS.2021.1004204
    [8]
    Y. Zhang and M. C. Zhou, “Security and trust in blockchains: Architecture, key technologies, and open issues,” IEEE Trans. Comput. Soc. Syst., vol. 7, no. 3, pp. 790–801, Jun. 2020. doi: 10.1109/TCSS.2020.2990103
    [9]
    W. L. Chen, J. Wu, Z. B. Zheng, C. Chen, and Y. R. Zhou, “Market manipulation of bitcoin: Evidence from mining the Mt. Gox transaction network,” in Proc. IEEE Conf. Computer Communications, Paris, France, 2019, pp. 964–972.
    [10]
    B. Y. Gao, H. Y. Wang, C. Xia, S. W. Wu, Y. J Zhou, X. P Luo, and G. Tyson, “Tracking counterfeit cryptocurrency end-to-end,” Proc. ACM Meas. Analy. Comput. Syst., vol. 4, no. 3, p. 50, Jun. 2021.
    [11]
    D. Vujičić, D. Jagodić, and S. Ranđić, “Blockchain technology, bitcoin, and Ethereum: A brief overview,” in Proc. 17th Int. Symp. Infoteh-Jahorina, East Sarajevo, Bosnia and Herzegovina, 2018, pp. 1–6.
    [12]
    M. Conti, E. S. Kumar, C. Lal, and S. Ruj, “A survey on security and privacy issues of bitcoin,” IEEE Commun. Surv. Tutorials, vol. 20, no. 4, pp. 3416–3452, Apr. 2018. doi: 10.1109/COMST.2018.2842460
    [13]
    S. Wang, L. W. Ouyang, Y. Yuan, X. C. Ni, X. Han, and F.-Y. Wang, “Blockchain-enabled smart contracts: Architecture, applications, and future trends,” IEEE Trans. Syst.,Man,Cybern.: Syst., vol. 49, no. 11, pp. 2266–2277, Nov. 2019. doi: 10.1109/TSMC.2019.2895123
    [14]
    F. Tschorsch and B. Scheuermann, “Bitcoin and beyond: A technical survey on decentralized digital currencies,” IEEE Commun. Surv. Tutorials, vol. 18, no. 3, pp. 2084–2123, Mar. 2016. doi: 10.1109/COMST.2016.2535718
    [15]
    M. C. K. Khalilov and A. Levi, “A survey on anonymity and privacy in bitcoin-like digital cash systems,” IEEE Commun. Surv. Tutorials, vol. 20, no. 3, pp. 2543–2585, Mar. 2018. doi: 10.1109/COMST.2018.2818623
    [16]
    Helo and Y. Hao, “Blockchains in operations and supply chains: A model and reference implementation,” Comput. Ind. Eng., vol. 136, pp. 242–251, Oct. 2019. doi: 10.1016/j.cie.2019.07.023
    [17]
    Y. Zhang, M. C. Zhou, Q. X. Zhao, A. Abusorrah, and O. O. Bamasag, “A performance-optimized consensus mechanism for consortium blockchains consisting of trust-varying nodes,” IEEE Trans. Netw. Sci. Eng., vol. 8, no. 3, pp. 2147–2159, Jul.–Sept. 2021. doi: 10.1109/TNSE.2021.3079415
    [18]
    Y. M. Liu, F. R. Yu, X. Li, H. Ji, and V. C. M. Leung, “Blockchain and machine learning for communications and networking systems,” IEEE Commun. Surv. Tutorials, vol. 22, no. 2, pp. 1392–1431, Feb. 2020. doi: 10.1109/COMST.2020.2975911
    [19]
    L. Yang, “The blockchain: State-of-the-art and research challenges,” J. Ind. Inf. Integr., vol. 15, pp. 80–90, Sept. 2019.
    [20]
    J. J. Wu, J. L. Liu, W. L. Chen, H. W. Huang, Z. B. Zheng, and Y. Zhang, “Detecting mixing services via mining bitcoin transaction network with hybrid motifs,” IEEE Trans. Syst.,Man,Cybern.: Syst., vol. 52, no. 4, pp. 2237–2249, Apr. 2022. doi: 10.1109/TSMC.2021.3049278
    [21]
    M. Mirtaheri, S. Abu-El-Haija, F. Morstatter, G. V. Steeg, and A. Galstyan, “Identifying and analyzing cryptocurrency manipulations in social media,” IEEE Trans. Comput. Soc. Syst., vol. 8, no. 3, pp. 607–617, Jun. 2021. doi: 10.1109/TCSS.2021.3059286
    [22]
    S. Farrugia, J. Ellul, and G. Azzopardi, “Detection of illicit accounts over the Ethereum blockchain,” Expert Syst. Appl., vol. 150, p. 113318, Jul. 2020. doi: 10.1016/j.eswa.2020.113318
    [23]
    J. J. Wu, J. L. Liu, Y. J. Zhao, and Z. B. Zheng, “Analysis of cryptocurrency transactions from a network perspective: An overview,” J. Netw. Comput. Appl., vol. 190, p. 103139, Sept. 2021. doi: 10.1016/j.jnca.2021.103139
    [24]
    F. Zola, M. Eguimendia, J. L. Bruse, and R. O. Urrutia, “Cascading machine learning to attack bitcoin anonymity,” in Proc. IEEE Int. Conf. Blockchain, Atlanta, USA, 2019, pp. 10–17.
    [25]
    M. Caprolu, S. Raponi, G. Oligeri, and R. Di Pietro, “Cryptomining makes noise: Detecting cryptojacking via machine learning,” Comput. Commun., vol. 171, pp. 126–139, Apr. 2021. doi: 10.1016/j.comcom.2021.02.016
    [26]
    Z. C. He, J. Liu, N. Li, and Y. L. Huang, “Learning network-to-network model for content-rich network embedding,” in Proc. 25th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, Anchorage, USA, 2019, pp. 1037–1045.
    [27]
    L. Z. Liao, X. N. He, H. W. Zhang, and T. S. Chua, “Attributed social network embedding,” IEEE Trans. Knowl. Data Eng., vol. 30, no. 12, pp. 2257–2270, Dec. 2018. doi: 10.1109/TKDE.2018.2819980
    [28]
    B. B. Hu, Y. Fang, and C. Shi, “Adversarial learning on heterogeneous information networks,” in Proc. 25th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, Anchorage, USA, 2019, pp. 120–129.
    [29]
    P. Cui, X. Wang, J. Pei, and W. W. Zhu, “A survey on network embedding,” IEEE Trans. Knowl. Data Eng., vol. 31, no. 5, pp. 833–852, May 2019. doi: 10.1109/TKDE.2018.2849727
    [30]
    X. Wang, Y. F. Lu, C. Shi, R. J. Wang, P. Cui, and S. Mou, “Dynamic heterogeneous information network embedding with meta-path based proximity,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 3, pp. 1117–1132, Mar. 2022. doi: 10.1109/TKDE.2020.2993870
    [31]
    L. C. Xu, X. K. Wei, J. N. Cao, and P. S. Yu, “Embedding of embedding (EOE): Joint embedding for coupled heterogeneous networks,” in Proc. 10th ACM Int. Conf. Web Search and Data Mining, Cambridge, UK, 2017, pp. 741–749.
    [32]
    A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for networks,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, California, USA, 2016, pp. 855–864.
    [33]
    J. Z. Qiu, Y. X. Dong, H. Ma, J. Li, K. S. Wang, and J. Tang, “Network embedding as matrix factorization: Unifying DeepWalk, LINE, PTE, and Node2vec,” in Proc. 11th ACM Int. Conf. Web Search and Data Mining, Marina Del Rey, USA, 2018, pp. 459–467.
    [34]
    C. C. Tu, W. C. Zhang, Z. Y. Liu, and M. S. Sun, “Max-margin DeepWalk: Discriminative learning of network representation,” in Proc. 25th Int. Joint Conf. Artificial Intelligence, New York, USA, 2016, pp. 3889–3895.
    [35]
    C. Yang, Z. Y. Liu, D. L. Zhao, M. S. Sun, and E. Y. Chang, “Network representation learning with rich text information,” in Proc. 24th Int. Conf. Artificial Intelligence, Buenos, Argentina, 2015, pp. 2111–2117.
    [36]
    S. S. Cao, W. Lu, and Q. K. Xu, “Deep neural networks for learning graph representations,” in Proc. AAAI Conf. Artif. Intell., vol. 30, no. 1, pp. 1145–1152, Feb. 2016.
    [37]
    B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: Online learning of social representations,” in Proc. 20th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, New York, USA, 2014, pp. 701–710.
    [38]
    D. X. Wang, P. Cui, and W. W. Zhu, “Structural deep network embedding,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, California, USA, 2016, pp. 1225–1234.
    [39]
    J. Tang, M. Qu, M. Z. Wang, M. Zhang, J. Yan, and Q. Z. Mei, “LINE: Large-scale information network embedding,” in Proc. 24th Int. Conf. World Wide Web, Florence, Italy, 2015, pp. 1067–1077.
    [40]
    X. Huang, J. D. Li, and X. Hu, “Label informed attributed network embedding,” in Proc. 10th ACM Int. Conf. Web Search and Data Mining, Cambridge, UK, 2017, pp. 731–739.
    [41]
    Z. H. Huang, Z. Y. Wang, R. Zhang, Y. Y. Zhao, X. H. Xie, and S. Mehrotra, “Network2Vec: Learning node representation based on space mapping in networks,” in Proc. Int. Conf. Data Mining Workshops, Beijing, China, 2019, pp. 727–734.
    [42]
    Z. Y. Zhao, H. Zhou, L. Qi, L. Chang, and M. C. Zhou, “Inductive representation learning via CNN for partially-unseen attributed networks,” IEEE Trans. Netw. Sci. Eng., vol. 8, no. 1, pp. 695–706, Jan.–Mar. 2021. doi: 10.1109/TNSE.2020.3048902
    [43]
    J. Z. Qiu, Y. X. Dong, H. Ma, J. Li, C. Wang, K. S. Wang, and J. Tang, “NetSMF: Large-scale network embedding as sparse matrix factorization,” in Proc. World Wide Web Conf., San Francisco, USA, 2019, pp. 1509–1520.
    [44]
    X. Liu, T. Murata, K. S. Kim, C. Kotarasu, and C. Y. Zhuang, “A general view for network embedding as matrix factorization,” in Proc. 12th ACM Int. Conf. Web Search and Data Mining, Melbourne, Australia, 2019, pp. 375–383.
    [45]
    B. Y. Chen, Z. Yang, and Z. W. Yang, “An algorithm for low-rank matrix factorization and its applications,” Neurocomputing, vol. 275, pp. 1012–1020, Jan. 2018. doi: 10.1016/j.neucom.2017.09.052
    [46]
    Y. Song, M. Li, X. Luo, G. S. Yang, and C. J. Wang, “Improved symmetric and nonnegative matrix factorization models for undirected, sparse and large-scaled networks: A triple factorization-based approach,” IEEE Trans. Ind. Inf., vol. 16, no. 5, pp. 3006–3017, May 2020. doi: 10.1109/TII.2019.2908958
    [47]
    G. F. Chen, C. Xu, J. Y. Wang, J. W. Feng, and J. Q. Feng, “Graph regularization weighted nonnegative matrix factorization for link prediction in weighted complex network,” Neurocomputing, vol. 369, pp. 50–60, Dec. 2019. doi: 10.1016/j.neucom.2019.08.068
    [48]
    H. A. Song, B. K. Kim, T. L. Xuan, and S. Y. Lee, “Hierarchical feature extraction by multi-layer non-negative matrix factorization network for classification task,” Neurocomputing, vol. 165, pp. 63–74, Oct. 2015. doi: 10.1016/j.neucom.2014.08.095
    [49]
    Y. Yuan and F.-Y. Wang, “Blockchain and cryptocurrencies: Model, techniques, and applications,” IEEE Trans. Syst.,Man,Cybern.: Syst., vol. 48, no. 9, pp. 1421–1428, Sept. 2018. doi: 10.1109/TSMC.2018.2854904
    [50]
    I. Alqassem, I. Rahwan, and D. Svetinovic, “The anti-social system properties: Bitcoin network data analysis,” IEEE Trans. Syst.,Man,Cybern.: Syst., vol. 50, no. 1, pp. 21–31, Jan. 2020. doi: 10.1109/TSMC.2018.2883678
    [51]
    M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques for embedding and clustering,” in Proc. 14th Int. Conf. Neural Information Processing System, Vancouver, Canada, 2001, pp. 585–591.
    [52]
    M. D. Ou, P. Cui, J. Pei, Z. W. Zhang, and W. W. Zhu, “Asymmetric transitivity preserving graph embedding,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, California, USA, 2016, pp. 1105–1114.
    [53]
    X. Wang, P. Cui, J. Wang, J. Pei, W. W. Zhu, and S. Q. Yang, “Community preserving network embedding,” in Proc. 31st AAAI Conf. Artificial Intelligence, San Francisco, USA, 2017, pp. 203–209.
    [54]
    L. Hu, X. H. Yuan, X. Liu, S. W. Xiong, and X. Luo, “Efficiently detecting protein complexes from protein interaction networks via alternating direction method of multipliers,” IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 16, no. 6, pp. 1922–1935, Nov.–Dec. 2019. doi: 10.1109/TCBB.2018.2844256
    [55]
    X. Luo, M. S. Shang, and S. Li, “Efficient extraction of non-negative latent factors from high-dimensional and sparse matrices in industrial applications,” in Proc. IEEE 16th Int. Conf. Data Mining, Barcelona, Spain, 2016, pp. 311–319.
    [56]
    J. D. Li, H. Dani, X. Hu, J. L. Tang, Y. Chang, and H. Liu, “Attributed network embedding for learning in a dynamic environment,” in Proc. ACM Conf. Information and Knowledge Management, Singapore, Singapore, 2017, pp. 387–396.
    [57]
    D. Y. Zhu, P. Cui, Z. W. Zhang, J. Pei, and W. W. Zhu, “High-order proximity preserved embedding for dynamic networks,” IEEE Trans. Knowl. Data Eng., vol. 30, no. 11, pp. 2134–2144, Nov. 2018.
    [58]
    K. Q. Chen, L. L. Yu, T. T. Zhu, L i, and J. Kurths, “Succinct representation of dynamic networks,” IEEE Trans. Knowl. Data Eng., vol. 33, no. 7, pp. 2983–2994, Jul. 2021. doi: 10.1109/TKDE.2019.2960240
    [59]
    A. Zhiyuli, X. Liang, Y. F. Chen, and X. Y. Du, “Modeling large-scale dynamic social networks via node embeddings,” IEEE Trans. Knowl. Data Eng., vol. 31, no. 10, pp. 1994–2007, Oct. 2019. doi: 10.1109/TKDE.2018.2872602
    [60]
    Y. L. Xiang, Y. Xiong, and Y. Y. Zhu, “TI-GCN: A dynamic network embedding method with time interval information,” in Proc. IEEE Int. Conf. Big Data, Atlanta, USA, 2020, pp. 838–847.
    [61]
    Y. J, Zhou, W. L. Liu, Y. Pei, L. Wang, D. R. Zha, and T. S. Fu, “Dynamic network embedding by semantic evolution,” in Proc. Int. Joint Conf. Neural Networks, Budapest, Hungary, 2019, pp. 1–8.
    [62]
    F. Xia, J. Y. Liu, H. S. Nie, Y. H. Fu, L. T. Wan, and X. J. Kong, “Random walks: A review of algorithms and applications,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 4, no. 2, pp. 95–107, Apr. 2020. doi: 10.1109/TETCI.2019.2952908
    [63]
    A. Narayanan, M. Chandramohan, R. Venkatesan, L. H. Chen, Y. Liu, and S. Jaiswal, “Graph2vec: Learning distributed representations of graphs,” 2017. arXiv preprint arXiv: 1707.05005.
    [64]
    Q. Yuan, B. Y. Huang, J. Zhang, J. J. Wu, H. N. Zhang, and X. Zhang, “Detecting phishing scams on ethereum based on transaction records,” in Proc. IEEE Int. Symp. Circuits and Systems, Seville, Spain, 2020, pp. 1–5.
    [65]
    B. Tao, I. W. H. Ho, and H. N. Dai, “Complex network analysis of the bitcoin blockchain network,” in Proc. IEEE Int. Symp. Circuits and Systems, Daegu, Korea (South), 2021, pp. 1–5.
    [66]
    Z. H. Yuan, Q. Yuan, and J. J. Wu, “Phishing detection on ethereum via learning representation of transaction subgraphs,” in Proc. 2nd Int. Conf. Blockchain and Trustworthy Systems, Dali, China, 2020, pp. 178–191.
    [67]
    L. J. Ma, Y. C. Ma, Q. Z. Lin, J. K. Ji, C. A. C. Coello, and M. G. Gong, “SNEGAN: Signed network embedding by using generative adversarial nets,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 6, no. 1, pp. 136–149, Feb. 2022. doi: 10.1109/TETCI.2020.3035937
    [68]
    X. M. Li, H. Fang, and J. Zhang, “Supervised user ranking in signed social networks,” in Proc. 33rd AAAI Conf. Artif. Intell., Palo Alto, USA, 2019, pp. 184–191.
    [69]
    J. Li, Y. Liu, and L. Zou, “DynGCN: A dynamic graph convolutional network based on spatial-temporal modeling,” in Proc. 21st Int. Conf. Web Information Systems Engineering, Amsterdam, The Netherlands, 2020, pp. 83–95.
    [70]
    V. Patel, L. Pan, and S. Rajasegarar, “Graph deep learning based anomaly detection in ethereum blockchain network,” in Proc. 14th Int. Conf. Network and System Security, Melbourne, Australia, 2020, pp. 132–148.
    [71]
    T. Huang, Y. H. Zhang, J. J. Wu, J. Y. Fang, and Z. B. Zheng, “MG-GCN: Fast and effective learning with mix-grained aggregators for training large graph convolutional networks,” 2020. arXiv preprint arXiv: 2011.09900.
    [72]
    D. S. H. Tam, W. C. Lau, B. Hu, Q. F. Ying, D. M. Chiu, and H. Liu, “Identifying illicit accounts in large scale e-payment networks — A graph representation learning approach,” 2019. arXiv preprint arXiv: 1906.05546.
    [73]
    T. Derr, Y. Ma, and J. L. Tang, “Signed graph convolutional networks,” in Proc. IEEE Int. Conf. Data Mining, Singapore, Singapore, 2018, pp. 929–934.
    [74]
    M. Qu, Y. Bengio, and J. Tang, “GMNN: Graph Markov neural networks,” in Proc. 36th Int. Conf. Machine Learning, Long Beach, USA, 2019, pp. 5241–5250.
    [75]
    R. Agrawal and L. De Alfaro, “Learning edge properties in graphs from path aggregations,” in Proc. World Wide Web Conf., San Francisco, USA, 2019, pp. 15–25.
    [76]
    V. Verma, M. Qu, K. Kawaguchi, A. Lamb, Y. Bengio, J. Kannala, and J. Tang, “GraphMix: Improved training of GNNs for semi-supervised learning,” in Proc. 35th AAAI Conf. Artif. Intell., Palo Alto, USA, 2021, pp. 10024–10032.
    [77]
    J. J. Huang, H. W. Shen, L. Hou, and X. Q. Cheng, “SDGNN: Learning node representation for signed directed networks,” in Proc. 35th AAAI Conf. Artif. Intell., Palo Alto, USA, 2021, pp. 196–203.
    [78]
    W. Kudo, M. Nishiguchi, and F. Toriumi, “GCNEXT: Graph convolutional network with expanded balance theory for fraudulent user detection,” Soc. Netw. Anal. Min., vol. 10, no. 1, p. 85, Oct. 2020. doi: 10.1007/s13278-020-00697-w
    [79]
    X. Liu, Z. Y. Tang, P. Li, S. Guo, X. Fan, and J. B. Zhang, “A graph learning based approach for identity inference in DApp platform blockchain,” IEEE Trans. Emerg. Top. Comput., vol. 10, no. 1, pp. 438–449, Jan.–Mar. 2022. doi: 10.1109/TETC.2020.3027309
    [80]
    J. J. Huang, H. W. Shen, L. Hou, and X. Q. Cheng, “Signed graph attention networks,” in Proc. 28th Int. Conf. Artificial Neural Networks, Munich, Germany, 2019, pp. 566–577.
    [81]
    Y. Li, Y. Tian, J. W. Zhang, and Y. Chang, “Learning signed network embedding via graph attention,” in Proc. 34th AAAI Conf. Artif. Intell., New York, USA, 2020, pp. 4772–4779.
    [82]
    Y. Wu, B. J. Wang, and W. Li, “Hierarchical attention signed network,” in Proc. 4th Int. Conf. Imaging, Signal Processing and Communications, Kumamoto, Japan, 2020, pp. 54–61.
    [83]
    W. B. Liu, Z. D. Wang, X. H. Liu, N. Y. Zeng, Y. R. Liu, and F. E. Alsaadi, “A survey of deep neural network architectures and their applications,” Neurocomputing, vol. 234, pp. 11–26, Apr. 2017. doi: 10.1016/j.neucom.2016.12.038
    [84]
    S. Y. Yao, Q. Kang, M. C. Zhou, M. J. Rawa, and A. Abusorrah, “A survey of transfer learning for machinery diagnostics and prognostics,” Artif. Intell. Rev., vol. 56, no. 4, pp. 2871–2922, Apr. 2023.
    [85]
    Q. Liu, S. X. Liu, G. Y. Wang, and S. Y. Xia, “Social relationship prediction across networks using tri-training BP neural networks,” Neurocomputing, vol. 401, pp. 377–391, Aug. 2020. doi: 10.1016/j.neucom.2020.02.057
    [86]
    De Meo, “Trust prediction via matrix factorisation,” ACM Trans. Internet Technol., vol. 19, no. 4, p. 44, Sept. 2019.
    [87]
    H. Abdi, “Singular value decomposition (SVD) and generalized singular value decomposition,” in Encyclopedia Measurement and Statistics, N. Salkind, Ed. Thousand Oaks, USA: Sage, 2007, pp. 907–912.
    [88]
    Z. G. Liu, Y. G. Yi, and X. Luo, “A high-order proximity-incorporated nonnegative matrix factorization-based community detector,” IEEE Trans. Emerg. Top. Comput. Intell., 2022, DOI: 10.1109/TETCI.2022.3230930.
    [89]
    Z. G. Liu, G. X. Yuan, and X. Luo, “Symmetry and nonnegativity-constrained matrix factorization for community detection,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 9, pp. 1691–1693, Sept. 2022. doi: 10.1109/JAS.2022.105794
    [90]
    X. Luo, W. Qin, A. Dong, K. Sedraoui, and M. C. Zhou, “Efficient and high-quality recommendations via momentum-incorporated parallel stochastic gradient descent-based learning,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 2, pp. 402–411, Feb. 2021. doi: 10.1109/JAS.2020.1003396
    [91]
    W. Yu, R. J. Mu, Y. Sun, X. Chen, W. J. Wang, and H. M. Wu, “A double non-negative matrix factorization model for signed network analysis,” in Proc. IEEE Int. Conf. Parallel and Distributed Processing With Applications, Big Data and Cloud Computing, Sustainable Computing and Communications, Social Computing and Networking, Xiamen, China, 2019, pp. 936–943.
    [92]
    J. Wang and R. J. Mu, “A regularized convex nonnegative matrix factorization model for signed network analysis,” Soc. Netw. Anal. Min., vol. 11, no. 1, p. 7, Jan. 2021. doi: 10.1007/s13278-020-00711-1
    [93]
    C. B. He, H. Liu, Y. Tang, S. Y. Liu, X. Fei, Q. W. Cheng, and H. C. Li, “Similarity preserving overlapping community detection in signed networks,” Future Gener. Comput. Syst., vol. 116, pp. 275–290, Mar. 2021. doi: 10.1016/j.future.2020.10.034
    [94]
    R. Salakhutdinov and A. Mnih, “Probabilistic matrix factorization,” in Proc. 20th Int. Conf. Neural Information Processing Systems, Vancouver, Canada, 2008, pp. 1257–1264.
    [95]
    M. Muzammal, F. Abbasi, Q. Qu, R. Talat, and J. Fan, “A decentralised approach for link inference in large signed graphs,” Future Gener. Comput. Syst., vol. 102, pp. 827–837, Jan. 2020. doi: 10.1016/j.future.2019.09.014
    [96]
    S. Y. Liu, J. Xiao, and X. K. Xu, “Link prediction in signed social networks: From status theory to Motif families,” IEEE Trans. Netw. Sci. Eng., vol. 7, no. 3, pp. 1724–1735, Jul.–Sept. 2020. doi: 10.1109/TNSE.2019.2951806
    [97]
    T. Qiu, M. Zhang, X. Z. Liu, J. Liu, C. Chen, and W. B. Zhao, “A directed edge weight prediction model using decision tree ensembles in industrial internet of things,” IEEE Trans. Ind. Inf., vol. 17, no. 3, pp. 2160–2168, Mar. 2021. doi: 10.1109/TII.2020.2995766
    [98]
    S. Y. Liu, J. Xiao, and X. K. Xu, “Sign prediction by Motif naive Bayes model in social networks,” Inf. Sci., vol. 541, pp. 316–331, Dec. 2020. doi: 10.1016/j.ins.2020.05.128
    [99]
    J. L. Pang, W. W. Yuan, and D. H. Guan, “Tri-domain pattern preserving sign prediction for signed networks,” Neurocomputing, vol. 421, pp. 234–243, Jan. 2021. doi: 10.1016/j.neucom.2020.08.004
    [100]
    Q. Liu, Y. Chen, G. Q. Zhang, and G. Y. Wang, “A novel functional network based on three-way decision for link prediction in signed social networks,” Cogn. Comput., vol. 14, no. 6, pp. 1942–1954, Jun. 2021.
    [101]
    D. Lin, J. J. Wu, Q. Yuan, and Z. B. Zheng, “T-edge: Temporal weighted multidigraph embedding for Ethereum transaction network analysis,” Front. Phys., vol. 8, p. 204, Jun. 2020. doi: 10.3389/fphy.2020.00204
    [102]
    K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J. Schmidhuber, “LSTM: A search space Odyssey,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 10, pp. 2222–2232, Oct. 2017. doi: 10.1109/TNNLS.2016.2582924
    [103]
    Y. Wang, C. W. Zhang, S. Wang, S. Yu, L. Bai, L. X. Cui, and G. D. Xu, “Generative temporal link prediction via self-tokenized sequence modeling,” World Wide Web, vol. 23, no. 4, pp. 2471–2488, May 2020. doi: 10.1007/s11280-020-00821-y
    [104]
    F. Jiao, X. Guo, X. Jing, D. X. He, H. M. Wu, S. R. Pan, M. G. Gong, and W. J. Wang, “Temporal network embedding for link prediction via VAE joint attention mechanism,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 12, pp. 7400–7413, Dec. 2022. doi: 10.1109/TNNLS.2021.3084957
    [105]
    J. Charlier, R. Statem, and J. Hilger, “Modeling smart contracts activities: A tensor based approach,” 2019. arXiv preprint arXiv: 1905.09868.
    [106]
    J. Charlier, S. Lagraa, R. State, and J. François, “Profiling smart contracts interactions tensor decomposition and graph mining,” in Proc. 2nd Workshop Mining Data for Financial Applications, Skopje, Macedonia, 2017, pp. 31–42.
    [107]
    Y. M. Li, D. S. H. Tam, S. Y. Xie, X. X. Liu, Q. F. Ying, W. C. Lau, D. M. Chiu, and S. Z. Chen, “GTEA: Representation learning for temporal interaction graphs via edge aggregation,” 2020. arXiv preprint arXiv: 2009.05266.
    [108]
    D. H. Wang, Z. H. Zhang, Y. H. Ma, T. Zhao, T. W. Jiang, N. V. Chawla, and M. Jiang, “Learning attribute-structure co-evolutions in dynamic graphs,” 2020. arXiv preprint arXiv: 2007.13004.
    [109]
    S. Bonner, A. Atapour-Abarghouei, P. T. Jackson, J. Brennan, I. Kureshi, G. Theodoropoulos, A. S. McGough, and B. Obara, “Temporal neighbourhood aggregation: Predicting future links in temporal graphs via recurrent variational graph convolutions,” in Proc. IEEE Int. Conf. Big Data, Los Angeles, USA, 2019, pp. 5336–5345.
    [110]
    V. S. Dave and M. Al Hasan, “Triangle completion time prediction using time-conserving embedding,” in Proc. Joint European Conf. Machine Learning and Knowledge Discovery Databases, Würzburg, Germany, 2020, pp. 541–557.
    [111]
    A. Pareja, G. Domeniconi, J. Chen, T. F. Ma, T. Suzumura, H. Kanezashi, T. Kaler, T. Schardl, and C. Leiserson, “EvolveGCN: Evolving graph convolutional networks for dynamic graphs,” in Proc. AAAI Conf. Artif. Intell., vol. 34, no. 4, pp. 5363–5370, Apr. 2020.
    [112]
    C. M. Wu, G. Nikolentzos, and M. Vazirgiannis, “EvoNet: A neural network for predicting the evolution of dynamic graphs,” in Proc. 29th Int. Conf. Artificial Neural Networks, Bratislava, Slovakia, 2020, pp. 594–606.
    [113]
    L. Cai, Z. Z. Chen, C. Luo, J. P. Gui, J. C. Ni, D. Li, and H. F. Chen, “Structural temporal graph neural networks for anomaly detection in dynamic graphs,” in Proc. 30th ACM Int. Conf. Information and Knowledge Management, Queensland, Australia, 2021, pp. 3747–3756.
    [114]
    O. A. Malik, S. Ubaru, L. Horesh, M. E. Kilmer, and H. Avron, “Dynamic graph convolutional networks using the tensor M-product,” 2019. arXiv preprint arXiv: 1910.07643.
    [115]
    L. Akoglu, E. Terzi, O. A. Malik, S. Ubaru, L. Horesh, M. E. Kilmer, and H. Avron, “Dynamic graph convolutional networks using the tensor M-product,” in Proc. SIAM Int. Conf. Data Mining, 2021, pp. 729–737.
    [116]
    X. Ao, Y. Liu, Z. D. Qin, Y. Sun, and Q. He, “Temporal high-order proximity aware behavior analysis on Ethereum,” World Wide Web, vol. 24, no. 5, pp. 1565–1585, Mar. 2021. doi: 10.1007/s11280-021-00875-6
    [117]
    H. F. Cao, Z. B. Zhang, L. Sun, and Z. Wang, “Inductive and irregular dynamic network representation based on ordinary differential equations,” Knowl.-Based Syst., vol. 227, p. 107271, Sept. 2021. doi: 10.1016/j.knosys.2021.107271
    [118]
    F. Manessi, A. Rozza, and M. Manzo, “Dynamic graph convolutional networks,” Pattern Recogn., vol. 97, p. 107000, Jan. 2020. doi: 10.1016/j.patcog.2019.107000
    [119]
    X. Luo, H. Wu, and Z. C. Li, “NeuLFT: A novel approach to nonlinear canonical polyadic decomposition on high-dimensional incomplete tensors,” IEEE Trans. Knowl. Data Eng., 2022, DOI: 10.1109/TKDE.2022.3176466.
    [120]
    L. Chen and X. Luo, “Tensor distribution regression based on the 3D conventional neural networks,” IEEE/CAA J. Autom. Sinica, 2022, DOI: 10.1109/JAS.2022.123591.
    [121]
    W. J. Qin, H. L. Wang, F. Zhang, J. J. Wang, X. Luo, and T. W. Huang, “Low-rank high-order tensor completion with applications in visual data,” IEEE Trans. Image Process., vol. 31, pp. 2433–2448, Mar. 2022. doi: 10.1109/TIP.2022.3155949
    [122]
    X. Luo, M. Z. Chen, H. Wu, Z. G. Liu, H. Q. Yuan, and M. C. Zhou, “Adjusting learning depth in nonnegative latent factorization of tensors for accurately modeling temporal patterns in dynamic QoS data,” IEEE Trans. Autom. Sci. Eng., vol. 18, no. 4, pp. 2142–2155, Oct. 2021. doi: 10.1109/TASE.2020.3040400
    [123]
    H. Wu, X. Luo, and M. C. Zhou, “Advancing non-negative latent factorization of tensors with diversified regularization schemes,” IEEE Trans. Serv. Comput., vol. 15, no. 3, pp. 1334–1344, May–Jun. 2022. doi: 10.1109/TSC.2020.2988760
    [124]
    H. Wu, X. Luo, M. C. Zhou, M. J. Rawa, K. Sedraoui, and A. Albeshri, “A PID-incorporated latent factorization of tensors approach to dynamically weighted directed network analysis,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 3, pp. 533–546, Mar. 2022. doi: 10.1109/JAS.2021.1004308
    [125]
    X. Luo, H. Wu, H. Q. Yuan, and M. C. Zhou, “Temporal pattern-aware QoS prediction via biased non-negative latent factorization of tensors,” IEEE Trans. Cybern., vol. 50, no. 5, pp. 1798–1809, May 2020. doi: 10.1109/TCYB.2019.2903736
    [126]
    M. Z. Chen, C. L. He, and X. Luo, “MNL: A highly-efficient model for large-scale dynamic weighted directed network representation,” IEEE Trans. Big Data, 2022, DOI: 10.1109/TBDATA.2022.3218064.
    [127]
    D. Wu and X. Luo, “Robust latent factor analysis for precise representation of high-dimensional and sparse data,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 4, pp. 796–805, Apr. 2021. doi: 10.1109/JAS.2020.1003533
    [128]
    M. S. Shang, X. Luo, Z. G. Liu, J. Chen, Y. Yuan, and M. C. Zhou, “Randomized latent factor model for high-dimensional and sparse matrices from industrial applications,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 131–141, Jan. 2019. doi: 10.1109/JAS.2018.7511189
    [129]
    A. H. Khan, X. W. Cao, S. Li, V. N. Katsikis, and L. F. Liao, “BAS-ADAM: An ADAM based approach to improve the performance of beetle antennae search optimizer,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 461–471, Mar. 2020. doi: 10.1109/JAS.2020.1003048
    [130]
    C. C. Leng, H. Zhang, G. R. Cai, I. Cheng, and A. Basu, “Graph regularized L p smooth non-negative matrix factorization for data representation,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 2, pp. 584–595, Mar. 2019. doi: 10.1109/JAS.2019.1911417
    [131]
    N. X. Yu, R. Yang, and M. J. Huang, “Deep common spatial pattern based motor imagery classification with improved objective function,” Int. J. Netw. Dyn. Intell., vol. 1, no. 1, pp. 73–84, Dec. 2022.
    [132]
    E. R. Pinto, E. G. Nepomuceno, and A. S. L. O. Campanharo, “Campanharo.Individual-based modelling of animal brucellosis spread with the use of complex networks,” Int. J. Netw. Dyn. Intell., vol. 1, no. 1, pp. 120–129, Dec. 2022.
    [133]
    M. M. Hassan, G. Fortino, L. T. Yang, H. Jiang, K. K. R. Choo, J. Zhang, and F.-Y. Wang, “Guest editorial for special issue on blockchain for Internet-of-Things and cyber-physical systems,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 12, p. 1867, Dec. 2021. doi: 10.1109/JAS.2021.1004219
    [134]
    S. K. Dwivedi, R. Amin, and S. Vollala, “Blockchain-based secured IPFS-enable event storage technique with authentication protocol in VANET,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 12, pp. 1913–1922, Dec. 2021. doi: 10.1109/JAS.2021.1004225
    [135]
    D. L. Xu, W. Shi, W. S. Zhai, and Z. H. Tian, “Multi-candidate voting model based on blockchain,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 12, pp. 1891–1900, Dec. 2021. doi: 10.1109/JAS.2021.1004207
    [136]
    Mamta, B. B. Gupta, K. C. Li, V. C. M. Leung, K. E. Psannis, and S. Yamaguchi, “Blockchain-assisted secure fine-grained searchable encryption for a cloud-based healthcare cyber-physical system,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 12, pp. 1877–1890, Dec. 2021. doi: 10.1109/JAS.2021.1004003
    [137]
    Y. Zhang, M. C. Zhou, C. X. Li, and A. Abusorrah, “Dynamic evolutionary game-based modeling, analysis and performance enhancement of blockchain channels,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 1, pp. 188–202, Jan. 2023. doi: 10.1109/JAS.2022.105911

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(9)

    Article Metrics

    Article views (728) PDF downloads(194) Cited by()

    Highlights

    • Progress of Cryptocurrency Transaction Network Embedding (CTNE) methodology and algorithms from static to dynamic perspectives has been thoroughly reviewed
    • Typical evaluation metrics, along with the most commonly-adopted and publicly available CTNE datasets have been summarized
    • Reviewed typical CTNE methods have been validated on two large-scale datasets to provide practitioner with empirical guidance
    • The developing trends of CTNE methodology have been discussed

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return