IEEE/CAA Journal of Automatica Sinica
Citation: | L. Y. Fang, D. S. Zhu, J. Yue, B. Zhang, and M. He, “Geometric-spectral reconstruction learning for multi-source open-set classification with hyperspectral and LiDAR data,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 10, pp. 1892–1895, Oct. 2022. doi: 10.1109/JAS.2022.105893 |
[1] |
A. Bendale and T. E. Boult, “Towards open set deep networks,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2016, pp. 1563–1572.
|
[2] |
W. J. Scheirer, A. de Rezende Rocha, A. Sapkota, and T. E. Boult, “Toward open set recognition,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 35, no. 7, pp. 1757–1772, Jul. 2013. doi: 10.1109/TPAMI.2012.256
|
[3] |
P. Oza and V. M. Patel, “C2AE: Class conditioned auto-encoder for open-set recognition,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, 2019, pp. 2307–2316.
|
[4] |
C. Geng, S.-J. Huang, and S. Chen, “Recent advances in open set recognition: A survey,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 43, no. 10, pp. 3614–3631, Oct. 2021. doi: 10.1109/TPAMI.2020.2981604
|
[5] |
Y. Liu, Y. H. Tang, L. X. Zhang, L, Liu, M. H. Song, et al., “Hyperspectral open set classification with unknown classes rejection towards deep networks,” Int. J. Remote Sensing, vol. 41, no. 16, pp. 6355–6383, 2020. doi: 10.1080/01431161.2020.1754492
|
[6] |
R. Yoshihashi, W. Shao, R. Kawakami, S. You, M. Iida, and T. Naemura, “Classification-reconstruction learning for open-set recognition,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, 2019, pp. 4016–4025.
|
[7] |
W. J. Scheirer, L. P. Jain, and T. E. Boult, “Probability models for open set recognition,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 36, no. 11, pp. 2317–2324, Nov. 2014.
|
[8] |
L. Neal, M. Olson, X. Fern, W.-K. Wong, and F. Li, “Open set learning with counterfactual images,” in Proc. European Conf. Computer Vision, 2018, pp. 613–628.
|
[9] |
J. Yue, D. Zhu, L. Fang, P. Ghamisi, and Y. Wang, “Adaptive spatial pyramid constraint for hyperspectral image classification with limited training samples,” IEEE Trans. Geoscience and Remote Sensing, vol. 60, pp. 1–14, 2021. doi: 10.1109/TGRS.2021.3095056
|
[10] |
Z. Zhong, J. Li, Z. Luo, and M. Chapman, “Spectral–Spatial residual network for hyperspectral image classification: A 3D deep learning framework,” IEEE Trans. Geoscience and Remote Sensing, vol. 56, no. 2, pp. 847–858, Feb. 2018.
|
[11] |
S. Xia, D. Chen, R. Wang, J. Li, and X. Zhang, “Geometric primitives in LiDAR point clouds: A review,” IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13, pp. 685–707, 2020. doi: 10.1109/JSTARS.2020.2969119
|
[12] |
J. Yue, W. Zhao, S. Mao, and H. Liu, “Spectral-spatial classification of hyperspectral images using deep convolutional neural networks,” Remote Sensing Letters, vol. 6, no. 6, pp. 468–477, 2015. doi: 10.1080/2150704X.2015.1047045
|
[13] |
J. Kang, R. Fernandez-Beltran, Z. Wang, X. Sun, J. Ni, and A. Plaza, “Rotation-invariant deep embedding for remote sensing images,” IEEE Trans. Geoscience and Remote Sensing, vol. 60, pp. 1–13, 2022.
|
[14] |
J. Kang, Z. Wang, R. Zhu, X. Sun, R. Fernandez-Beltran, and A. Plaza, “PiCoCo: Pixelwise contrast and consistency learning for semisupervised building footprint segmentation,” IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 10548–10559, 2021. doi: 10.1109/JSTARS.2021.3119286
|
[15] |
H. Liu, M. Zhou, and Q. Liu, “An embedded feature selection method for imbalanced data classification,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 3, pp. 703–715, May 2019. doi: 10.1109/JAS.2019.1911447
|
[16] |
S. Liu, Q. Shi, and L. Zhang, “Few-shot hyperspectral image classification with unknown classes using multitask deep learning,” IEEE Trans. Geoscience and Remote Sensing, vol. 59, no. 6, pp. 5085–5102, 2021. doi: 10.1109/TGRS.2020.3018879
|
[17] |
W. J. Scheirer, A. Rocha, R. J. Micheals, and T. E. Boult, “Meta-recognition: The theory and practice of recognition score analysis,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 33, no. 8, pp. 1689–1695, Aug. 2011. doi: 10.1109/TPAMI.2011.54
|
[18] |
L. Mou, P. Ghamisi, and X. X. Zhu, “Deep recurrent neural networks for hyperspectral image classification,” IEEE Trans. Geoscience and Remote Sensing, vol. 55, no. 7, pp. 3639–3655, 2017. doi: 10.1109/TGRS.2016.2636241
|
[19] |
J. Yue, L. Fang, H. Rahmani, and P. Ghamisi, “Self-supervised learning with adaptive distillation for hyperspectral image classification,” IEEE Trans. Geoscience and Remote Sensing, vol. 60, pp. 1–13, 2022. doi: 10.1109/TGRS.2021.3057768
|
[20] |
J. Wang, J. Zhou, X. Liu, and F. Jahan, “Spectral and spatial residual attention network for joint hyperspectral and LIDAR data classification,” in Proc IEEE Int. Geoscience and Remote Sensing Symposium, Jul. 2021, pp. 278–281.
|