A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 7.847, Top 10% (SCI Q1)
    CiteScore: 13.0, Top 5% (Q1)
    Google Scholar h5-index: 64, TOP 7
Turn off MathJax
Article Contents
C. Liu, “Formal modeling and discovery of multi-instance business processes: A cloud resource management case study,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 12, pp. 2151–2160, Dec. 2022. doi: 10.1109/JAS.2022.106109
Citation: C. Liu, “Formal modeling and discovery of multi-instance business processes: A cloud resource management case study,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 12, pp. 2151–2160, Dec. 2022. doi: 10.1109/JAS.2022.106109

Formal Modeling and Discovery of Multi-instance Business Processes: A Cloud Resource Management Case Study

doi: 10.1109/JAS.2022.106109
Funds:  This work was supported by the National Natural Science Foundation of China (61902222), the Taishan Scholars Program of Shandong Province (tsqn201909109), the Natural Science Excellent Youth Foundation of Shandong Province (ZR2021YQ45), and the Youth Innovation Science and Technology Team Foundation of Shandong Higher School (2021KJ031)
More Information
  • Process discovery, as one of the most challenging process analysis techniques, aims to uncover business process models from event logs. Many process discovery approaches were invented in the past twenty years; however, most of them have difficulties in handling multi-instance sub-processes. To address this challenge, we first introduce a multi-instance business process model (MBPM) to support the modeling of processes with multiple sub-process instantiations. Formal semantics of MBPMs are precisely defined by using multi-instance Petri nets (MPNs) that are an extension of Petri nets with distinguishable tokens. Then, a novel process discovery technique is developed to support the discovery of MBPMs from event logs with sub-process multi-instantiation information. In addition, we propose to measure the quality of the discovered MBPMs against the input event logs by transforming an MBPM to a classical Petri net such that existing quality metrics, e.g., fitness and precision, can be used. The proposed discovery approach is properly implemented as plugins in the ProM toolkit. Based on a cloud resource management case study, we compare our approach with the state-of-the-art process discovery techniques. The results demonstrate that our approach outperforms existing approaches to discover process models with multi-instance sub-processes.

     

  • loading
  • [1]
    W. M. P. Van der Aalst, Process Mining: Discovery, Conformance and Enhancement of Business Processes. New York, USA: Springer, 2011.
    [2]
    C. Liu, H. Duan, Q. T. Zeng, M. C. Zhou, F. M. Lu, and J. J. Cheng, “Towards comprehensive support for privacy preservation cross-organization business process mining,” IEEE Trans. Serv. Comput., vol. 12, no. 4, pp. 639–653, Jul.–Aug. 2019. doi: 10.1109/TSC.2016.2617331
    [3]
    W. van der Aalst, T. Weijters, and L. Maruster, “Workflow mining: Discovering process models from event logs,” IEEE Trans. Knowl. Data Eng., vol. 16, no. 9, pp. 1128–1142, Sep. 2004. doi: 10.1109/TKDE.2004.47
    [4]
    A. J. M. M. Weijters, W. M. P. van der Aalst, and A. K. A. De Medeiros, “Process mining with the HeuristicsMiner algorithm,” Technische Universiteit Eindhoven, Einhofen, Netherlands, Tech. Rep. WP, 2006.
    [5]
    S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst, “Discovering block-structured process models from event logs — A constructive approach,” in Proc. 34th Int. Conf. Applications and Theory of Petri Nets and Concurrency, Milan, Italy, 2013, pp. 311–329.
    [6]
    Q. T. Zeng, S. X. Sun, H. Duan, C. Liu, and H. Q. Wang, “Cross-organizational collaborative workflow mining from a multi-source log,” Decis. Support Syst., vol. 54, no. 3, pp. 1280–1301, Feb. 2013. doi: 10.1016/j.dss.2012.12.001
    [7]
    I. Weber, M. Farshchi, J. Mendling, and J. G. Schneider, “Mining processes with multi-instantiation,” in Proc. 30th Annu. ACM Symp. Applied Computing, Salamanca, Spain, 2015, pp. 1231–1237.
    [8]
    L. J. Wen, J. M. Wang, W. M. P. van der Aalst, B. Q. Huang, and J. G. Sun, “A novel approach for process mining based on event types,” J. Intell. Inf. Syst., vol. 32, no. 2, pp. 163–190, Apr. 2009. doi: 10.1007/s10844-007-0052-1
    [9]
    L. J. Wen, W. M. P. van der Aalst, J. M. Wang, and J. G. Sun, “Mining process models with non-free-choice constructs,” Data Min. Knowl. Disc., vol. 15, no. 2, pp. 145–180, Oct. 2007. doi: 10.1007/s10618-007-0065-y
    [10]
    R. Conforti, M. Dumas, L. García-Bañuelos, and M. La Rosa, “BPMN miner: Automated discovery of BPMN process models with hierarchical structure,” Inf. Syst., vol. 56, pp. 284–303, Mar. 2016. doi: 10.1016/j.is.2015.07.004
    [11]
    X. X. Lu, M. Nagelkerke, D. van der Wiel, and D. Fahland, “Discovering interacting artifacts from ERP systems,” IEEE Trans. Serv. Comput., vol. 8, no. 6, pp. 861–873, Nov.–Dec. 2015. doi: 10.1109/TSC.2015.2474358
    [12]
    M. L. van Eck, N. Sidorova, and W. M. P. van der Aalst, “Multi-instance mining: Discovering synchronisation in artifact-centric processes,” in Proc. Int. Conf. Business Process Management, Sydney, Australia, 2018, pp. 18–30.
    [13]
    A. Kheldoun, K. Barkaoui, and M. Ioualalen, “Formal verification of complex business processes based on high-level petri nets,” Inf. Sci., vol. 385–386, pp. 39–54, Apr. 2017. doi: 10.1016/j.ins.2016.12.044
    [14]
    C. Liu, “Hierarchical business process discovery: Identifying sub-processes using lifecycle information,” in Proc. Int. Conf. Web Services, Beijing, China, 2020, pp. 423–427.
    [15]
    C. Liu, L. Cheng, Q. T. Zeng, and L. J. Wen, “Formal modeling and discovery of hierarchical business processes: A Petri net based approach,” IEEE Trans. Syst., Man, and Cybern.: Syst., 2022. DOI: 10.1109/TSMC.2022.3195869
    [16]
    C. Liu, “Automatic discovery of behavioral models from software execution data,” IEEE Trans. Autom. Sci. Eng., vol. 15, no. 4, pp. 1897–1908, Oct. 2018. doi: 10.1109/TASE.2018.2844725
    [17]
    C. Liu, “Discovery and quality evaluation of software component behavioral models,” IEEE Trans. Autom. Sci. Eng., vol. 18, no. 4, pp. 1538–1549, Oct. 2021. doi: 10.1109/TASE.2020.3008897
    [18]
    M. Leemans, W. M. P. van der Aalst, and M. G. J. van den Brand, “The statechart workbench: Enabling scalable software event log analysis using process mining,” in Proc. 25th Int. Conf. Software Analysis, Evolution and Reengineering, Campobasso, Italy, 2018, pp. 502–506.
    [19]
    M. H. Ghahramani, M. C. Zhou, and C. T. Hon, “Toward cloud computing QoS architecture: Analysis of cloud systems and cloud services,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 1, pp. 6–18, Jan. 2017. doi: 10.1109/JAS.2017.7510313
    [20]
    L. Wang, Y. Y. Du, and L. Qi, “Efficient deviation detection between a process model and event logs,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 6, pp. 1352–1364, Nov. 2019. doi: 10.1109/JAS.2019.1911750
    [21]
    Q. Mo, W. Song, F. Dai, L. L. Lin, and T. Li, “Development of collaborative business processes: A correctness enforcement approach,” IEEE Trans. Serv. Comput., vol. 15, no. 2, pp. 752–765, Mar.–Apr. 2022. doi: 10.1109/TSC.2019.2961346
    [22]
    C. Liu, Q. T. Zeng, L. Cheng, H. Duan, M. C. Zhou, and J. J. Cheng, “Privacy-preserving behavioral correctness verification of cross-organizational workflow with task synchronization patterns,” IEEE Trans. Autom. Sci. Eng., vol. 18, no. 3, pp. 1037–1048, Jul. 2021. doi: 10.1109/TASE.2020.2993376
    [23]
    C. Liu, Q. T. Zeng, L. Cheng, H. Duan, and J. J. Cheng, “Measuring similarity for data-awarebusiness processes,” IEEE Trans. Autom. Science and Engineering, vol. 19, no. 2, pp. 1070–1082, Apr. 2022.
    [24]
    C. Liu, Y. L. Pei, L. Cheng, Q. T. Zeng, and H. Duan, “Sampling business process event logs using graph-based ranking model,” Concurrency and Computation: Practice and Experience, vol. 33, no. 5, pp. 1–14, 2021.
    [25]
    C. Liu, H. L. Li, S. P. Zhang, L. Cheng, and Q. T. Zeng, “Cross-Department collaborative healthcare process model discovery from event logs”, IEEE Trans. Autom. Science and Engineering, 2022. DOI: 10.1109/TASE.2022.3194312
    [26]
    H. Duan, C. Liu, Q. T. Zeng, and M. C. Zhou, “Refinement-based hierarchical modeling and correctness verification of cross-organization collaborative emergency response processes,” IEEE Trans. Syst.,Man,Cybern.: Syst., vol. 50, no. 8, pp. 2845–2859, Aug. 2020. doi: 10.1109/TSMC.2018.2838053
    [27]
    Q. T. Zeng, C. Liu, H. Duan, and M. C. Zhou, “Resource conflict checking and resolution controller design for cross-organization emergency response processes,” IEEE Trans. Syst.,Man,Cybern.: Syst., vol. 50, no. 10, pp. 3685–3700, Oct. 2020. doi: 10.1109/TSMC.2019.2906335
    [28]
    S. G. Wang, W. L. Duo, X. Guo, X. N. Jiang, D. You, K. Barkaoui, and M. C. Zhou, “Computation of an emptiable minimal siphon in a subclass of Petri nets using mixed-integer programming,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 1, pp. 219–226, Jan. 2021.
    [29]
    W. Reisig, Petri Nets: An Introduction, Vol 4. Springer Science & Business Media, 2012.
    [30]
    W. M. P. van der Aalst, “The application of petri nets to workflow management,” J. Circuits,Syst.,Comput., vol. 8, no. 1, pp. 21–66, Feb. 1998. doi: 10.1142/S0218126698000043
    [31]
    F. Rosa-Velardo and D. de Frutos-Escrig, “Name creation vs. replication in petri net systems,” Fundam. Inform., vol. 88, no. 3, pp. 329–356, Aug. 2008.
    [32]
    F. Rosa-Velardo and D. de Frutos-Escrig, “Decidability and complexity of petri nets with unordered data,” Theor. Comput. Sci., vol. 412, no. 34, pp. 4439–4451, Aug. 2011. doi: 10.1016/j.tcs.2011.05.007
    [33]
    A. Adriansyah, B. F. van Dongen, and W. M. P. van der Aalst, “Conformance checking using cost-based fitness analysis,” in Proc. 15th Int. Enterprise Distributed Object Computing Conf., Helsinki, Finland, 2011, pp. 55–64.
    [34]
    A. Adriansyah, J. Munoz-Gama, J. Carmona, B. F. van Dongen, and W. M. P. van der Aalst, “Alignment based precision checking,” in Proc. Int. Conf. Business Process Management, Tallinn, Estonia, 2012, pp. 137–149.
    [35]
    J. De Weerdt, M. De Backer, J. Vanthienen, and B. Baesens, “A robust F-measure for evaluating discovered process models,” in Proc. IEEE Symp. Computational Intelligence and Data Mining, Paris, France, 2011, pp. 148–155.
    [36]
    K. B. Lassen and W. M. P. van der Aalst, “Complexity metrics for workflow nets,” Inf. Softw. Technol., vol. 51, no. 3, pp. 610–626, Mar. 2009. doi: 10.1016/j.infsof.2008.08.005
    [37]
    S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst, “Using life cycle information in process discovery,” in Proc. 13th Int. Conf. Business Process Management, Innsbruck, Austria, 2016, pp. 204–217.
    [38]
    J. G. Lou, Q. Fu, S. Q. Yang, J. Li, and B. Wu, “Mining program workflow from interleaved traces,” in Proc. 16th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, Washington, USA, 2010, pp. 613–622.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (773) PDF downloads(45) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return