A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 7.847, Top 10% (SCI Q1)
    CiteScore: 13.0, Top 5% (Q1)
    Google Scholar h5-index: 64, TOP 7
Turn off MathJax
Article Contents
W. Lu, J. C. Li, H. H. Qin, L. Shu, and A. G. Song, “On dual-mode driving control method for a novel unmanned tractor with high safety and reliability,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 12, pp. 1–19, Dec. 2022.
Citation: W. Lu, J. C. Li, H. H. Qin, L. Shu, and A. G. Song, “On dual-mode driving control method for a novel unmanned tractor with high safety and reliability,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 12, pp. 1–19, Dec. 2022.

On Dual-Mode Driving Control Method for a Novel Unmanned Tractor With High Safety and Reliability

Funds:  This work was supported in part by the Independent Innovation Project of Agricultural Science and Technology of Jiangsu Province (CX (20)3068), Modern Agricultural Machinery Equipment and Technology Demonstration and Promotion Project of Jiangsu Province (NJ2021-37), National Foreign Experts Program of China (G2021145010L), Science and Technology Project of Suzhou City (SNG2020039)
More Information
  • Due to the non-standardization and complexity of the farmland environment, it is always a huge challenge for tractors to achieve fully autonomy (work at Self-driving mode) all the time in agricultural industry. Whereas, when tractors work in the Tele-driving (or Remote driving) mode, the operators are prone to fatigue because they need to concentrate for long periods of time. In response to these, a dual-mode control strategy was proposed to integrate the advantages of both approaches, i.e., by combing Self-driving at most of the time with Tele-driving under special (complex and hazardous) conditions through switching control method. First, the state switcher was proposed, which is used for smooth switching the driving modes according to different working states of a tractor. Then, the state switching control law and the corresponding subsystem tracking controllers were designed. Finally, the effectiveness and superiority of the dual-mode control method were evaluated via actual experimental testing of a tractor whose results show that the proposed control method can switch smoothly, stably, and efficiently between the two driving modes automatically. The average control accuracy has been improved by 20% and 15% respectively, compared to the conventional Tele-driving control and Self-driving control with low-precision navigation. In conclusion, the proposed dual-mode control method can not only satisfy the operation in the complex and changeable farmland environment, but also free drivers from high-intensity and fatiguing work. This provides a perfect application solution and theoretical support for the intelligentization of unmanned farm agricultural machinery with high safety and reliability.


  • loading
  • 1 The control input in Fig. 5 is the steering angle (θ) of the steering, where satisfied $ \theta = f(\delta) $. The function $ f(\cdot) $ satisfies the geometric relationship of the designed steering manipulator model.
  • [1]
    M. Pathan, N. Patel, H. Yagnik, and M. Shah, “Artificial cognition for applications in smart agriculture: A comprehensive review,” Artif. Intell. Agric., vol. 4, pp. 81–95, Jun. 2020.
    M. Bacco, Barsocchi, E. Ferro, A. Gotta, and M. Ruggeri, “The digitisation of agriculture: A survey of research activities on smart farming,” Array, vol. 3–4, Sep.–Dec. 2019. doi: 10.1016/j.array.2019.100009
    X. Yang, L. Shu, J. N. Chen, M. A. Ferrag, J. Wu, E. Nurellari, and K. Huang, “A survey on smart agriculture: Development modes, technologies, and security and privacy challenges,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 2, pp. 273–302, Feb. 2021. doi: 10.1109/JAS.2020.1003536
    K. Alipour, A. B. Robat, and B. Tarvirdizadeh, “Dynamics modeling and sliding mode control of tractor-trailer wheeled mobile robots subject to wheels slip,” Mech. Mach. Theory, vol. 138, pp. 16–37, Aug. 2019. doi: 10.1016/j.mechmachtheory.2019.03.038
    Y. Ding, L. Wang, Y. W. Li, and D. L. Li, “Model predictive control and its application in agriculture: A review,” Comput. Electron. Agric., vol. 151, pp. 104–117, Aug. 2018. doi: 10.1016/j.compag.2018.06.004
    M. Kebria, A. Khosravi, S. M. Salaken, and S. Nahavandi, “Deep imitation learning for autonomous vehicles based on convolutional neural networks,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 82–95, Jan. 2020. doi: 10.1109/JAS.2019.1911825
    Q. Zhou, Y. F. Zhang, Z. Y. Li, J. Li, H. M. Xu, and O. Olatunbosun, “Cyber-physical energy-saving control for hybrid aircraft-towing tractor based on online swarm intelligent programming,” IEEE Trans. Industr. Inform., vol. 14, no. 9, pp. 4149–4158, Sep. 2018. doi: 10.1109/TII.2017.2781230
    H. Y. Guo, L. H. Song, J. Liu, F.-Y. Wang, D. Cao, H. Chen, C. Lv, and C. K. Luk, “Hazard-evaluation-oriented moving horizon parallel steering control for driver-automation collaboration during automated driving,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 6, pp. 1062–1073, Nov. 2018. doi: 10.1109/JAS.2018.7511225
    İ. Eski and Z. A. Kuş, “Control of unmanned agricultural vehicles using neural network-based control system,” Neural Comput. Appl., vol. 31, no. S1, pp. 583–595, Jan. 2019. doi: 10.1007/s00521-017-3026-4
    Y. Deng, T. H. Zhang, G. N. Lou, X. Zheng, J. Jin, and Q.-L. Han, “Deep learning-based autonomous driving systems: A survey of attacks and defenses,” IEEE Trans. Industr. Inform., vol. 17, no. 12, pp. 7897–7912, Dec. 2021. doi: 10.1109/TII.2021.3071405
    X. M. Zhao, H. Mo, K. F. Yan, and L. X. Li, “Type-2 fuzzy control for driving state and behavioral decisions of unmanned vehicle,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 178–186, Jan. 2020.
    S. Bonadies and S. A. Gadsden, “An overview of autonomous crop row navigation strategies for unmanned ground vehicles,” Eng. Agric. Environ. Food, vol. 12, no. 1, pp. 24–31, Jan. 2019. doi: 10.1016/j.eaef.2018.09.001
    A. Roshanianfard, N. Noguchi, H. Okamoto, and K. Ishii, “A review of autonomous agricultural vehicles (The experience of Hokkaido University),” J. Terramech., vol. 91, pp. 155–183, Oct. 2020. doi: 10.1016/j.jterra.2020.06.006
    Y. F. Liu and N. Noguchi, “Development of an unmanned surface vehicle for autonomous navigation in a paddy field,” Eng. Agric. Environ. Food, vol. 9, no. 1, pp. 21–26, Jan. 2016. doi: 10.1016/j.eaef.2015.09.003
    Y. L. Shang, “Subgraph robustness of complex networks under attacks,” IEEE Trans. Syst. Man Cybern. Syst., vol. 49, no. 4, pp. 821–832, Apr. 2019. doi: 10.1109/TSMC.2017.2733545
    Y. Yuan, Y. J. Wang, and L. Guo, “Force reflecting control for bilateral teleoperation system under time-varying delays,” IEEE Trans. Industr. Inform., vol. 15, no. 2, pp. 1162–1172, Feb. 2019. doi: 10.1109/TII.2018.2822670
    S. Hangai and T. Nozaki, “Haptic data prediction and extrapolation for communication traffic reduction of four-channel bilateral control system,” IEEE Trans. Industr. Inform., vol. 17, no. 4, pp. 2611–2620, Apr. 2021. doi: 10.1109/TII.2020.2995627
    Z. H. Zhao, J. Yang, S. H. Li, and W. H. Chen, “Composite nonlinear bilateral control for teleoperation systems with external disturbances,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 5, pp. 1220–1229, Sep. 2019. doi: 10.1109/JAS.2018.7511273
    U. Edet and D. Mann, “Visual information requirements for remotely supervised autonomous agricultural machines,” Appl. Sci., vol. 10, no. 8, p. 2794, Apr. 2020. doi: 10.3390/app10082794
    Y. Chen, B. H. Zhang, J. Zhou, and K. Wang, “Real-time 3D unstructured environment reconstruction utilizing VR and Kinect-based immersive teleoperation for agricultural field robots,” Comput. Electron. Agric., vol. 175, p. 105579, Aug. 2020.
    X. K. Xu, X. M. Li, and R. H. Zhang, “Remote configurable image acquisition lifting robot for smart agriculture,” in Proc. IEEE 4th Advanced Information Technology, Electronic and Automation Control Conf., Chengdu, China, 2019, pp. 1545–1548.
    Z. J. Lu and J. C. F. de Winter, “A review and framework of control authority transitions in automated driving,” Procedia Manuf., vol. 3, pp. 2510–2517, Jul. 2015. doi: 10.1016/j.promfg.2015.07.513
    D. H. Kim, C. H. Choi, and Y. J. Kim, “Analysis of driving performance evaluation for an unmanned tractor,” IFAC-PapersOnLine, vol. 51, no. 17, pp. 227–231, Jan. 2018. doi: 10.1016/j.ifacol.2018.08.149
    C. Huang, F. Naghdy, H. Du, and H. L. Huang, “Shared control of highly automated vehicles using steer-by-wire systems,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 2, pp. 410–423, Mar. 2019. doi: 10.1109/JAS.2019.1911384
    X. S. Zhou and J. Zhou, “Data-driven driving state control for unmanned agricultural logistics vehicle,” IEEE Access, vol. 8, pp. 65530–65543, Mar. 2020. doi: 10.1109/ACCESS.2020.2983424
    G. Chen and W. G. Zhang, “Hierarchical coordinated control method for unmanned robot applied to automotive test,” IEEE Trans. Industr. Electron., vol. 63, no. 2, pp. 1039–1051, Feb. 2016. doi: 10.1109/TIE.2015.2477266
    A. S. Matveev, M. Hoy, J. Katupitiya, and A. V. Savkin, “Nonlinear sliding mode control of an unmanned agricultural tractor in the presence of sliding and control saturation,” Robot. Auton. Syst., vol. 61, no. 9, pp. 973–987, Sep. 2013. doi: 10.1016/j.robot.2013.05.003
    W. Upaphai, Bunyawanichakul, and M. Janthong, “Design of self-tuning fuzzy PID controllers for position tracking control of autonomous agricultural tractor,” Pertanika J. Sci. Technol., vol. 27, no. 1, pp. 263–280, Jan. 2019.
    E. Kayacan, W. Saeys, H. Ramon, C. Belta, and J. M. Peschel, “Experimental validation of linear and nonlinear MPC on an articulated unmanned ground vehicle,” IEEE/ASME Trans. Mech., vol. 23, no. 5, pp. 2023–2030, Oct. 2018. doi: 10.1109/TMECH.2018.2854877
    É. de Carvalho Castro Penido, M. M. Teixeira, H. C. Fernandes, B. Monteiro, and R. Cecon, “Development and evaluation of a remotely controlled and monitored self-propelled sprayer in tomato crops,” Rev. Cienc. Agron., vol. 50, no. 1, pp. 8–17, Mar. 2019.
    Y. J. Wang, F. Z. Yang, G. T. Pan, H. Y. Liu, Z. J. Liu, and J. Q. Zhang, “Design and testing of a small remote-control hillside tractor,” Trans. ASABE, vol. 57, no. 2, pp. 363–370, Jan. 2014.
    T. J. Lutz and G. T. Homce, “Remote control of an agricultural tractor in SAE field upset tests,” Int. J. Vehicle Des., vol. 34, no. 3, pp. 286–296, May 2004. doi: 10.1504/IJVD.2004.004013
    D. O. Gonzalez, B. Martin-Gorriz, I. I. Berrocal, A. M. Morales, G. A. Salcedo, and B. M. Hernandez, “Development and assessment of a tractor driving simulator with immersive virtual reality for training to avoid occupational hazards,” Comput. Electron. Agric., vol. 143, pp. 111–118, Dec. 2017. doi: 10.1016/j.compag.2017.10.008
    F. X. Xu, X. H. Liu, W. Chen, and C. Zhou, “Dynamic switch control of steering modes for four wheel independent steering rescue vehicle,” IEEE Access, vol. 7, pp. 135595–135605, Sep. 2019. doi: 10.1109/ACCESS.2019.2941914
    H. G. Han, H. X. Liu, and J. F. Qiao, “Knowledge-data-driven flexible switching control for wastewater treatment process,” IEEE Trans. Control Syst. Technol., vol. 30, no. 3, pp. 1116–1129, May 2022. doi: 10.1109/TCST.2021.3095849
    C. X. Liu, G. L. Wen, Z. J. Zhao, and R. Sedaghati, “Neural-network-based sliding-mode control of an uncertain robot using dynamic model approximated switching gain,” IEEE Trans. Cybern., vol. 51, no. 5, pp. 2339–2346, May 2021. doi: 10.1109/TCYB.2020.2978003
    D. Yang, G. D. Zong, and S. F. Su, “H tracking control of uncertain markovian hybrid switching systems: A fuzzy switching dynamic adaptive control approach,” IEEE Trans. Cybern., vol. 52, no. 5, pp. 3111–3122, May 2022.
    W. S. Wang, X. X. Na, D. Cao, J. W. Gong, J. Q. Xi, Y. Xing, and F. Y. Wang, “Decision-making in driver-automation shared control: A review and perspectives,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1289–1307, Sep. 2020.
    C. Zhang, L. L. Yang, and N. Noguchi, “Development of a robot tractor controlled by a human-driven tractor system,” Eng. Agric. Environ. Food, vol. 8, no. 1, pp. 7–12, Jan. 2015. doi: 10.1016/j.eaef.2015.01.003
    J. Q. Wang, L. Zhang, D. Z. Zhang, and K. Q. Li, “An adaptive longitudinal driving assistance system based on driver characteristics,” IEEE Trans. Intell. Transp. Syst., vol. 14, no. 1, pp. 1–12, Mar. 2013. doi: 10.1109/TITS.2012.2205143
    J. Huang, Y. M. Chen, X. Y. Peng, L. Hu, and D. Cao, “Study on the driving style adaptive vehicle longitudinal control strategy,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 1107–1115, Jul. 2020. doi: 10.1109/JAS.2020.1003261
    B. Bashiri and D. D. Mann, “Automation and the situation awareness of drivers in agricultural semi-autonomous vehicles,” Biosyst. Eng., vol. 124, pp. 8–15, Aug. 2014. doi: 10.1016/j.biosystemseng.2014.06.002
    A. Stentz, C. Dima, C. Wellington, H. Herman, and D. Stager, “A system for semi-autonomous tractor operations,” Auton. Robots, vol. 13, no. 1, pp. 87–104, Jul. 2002. doi: 10.1023/A:1015634322857
    S. C. Ma, T. Zanma, and M. Ishida, “Automatic driving system using identification of switched systems with unknown switch points,” IEEJ Trans. Electr. Electron. Eng., vol. 1, no. 4, pp. 426–437, Nov. 2006. doi: 10.1002/tee.20077
    M. Karkee and B. L. Steward, “Study of the open and closed loop characteristics of a tractor and a single axle towed implement system,” J. Terramech., vol. 47, no. 6, pp. 379–393, Dec. 2010. doi: 10.1016/j.jterra.2010.05.005
    H. Wang and N. Noguchi, “Real-time states estimation of a farm tractor using dynamic mode decomposition,” GPS Solut., vol. 25, no. 1, Jan. 2021.
    Z. Y. Liu, M. Yue, L. Guo, and Y. S. Zhang, “Trajectory planning and robust tracking control for a class of active articulated tractor-trailer vehicle with on-axle structure,” Eur. J. Control, vol. 54, pp. 87–98, Jul. 2020. doi: 10.1016/j.ejcon.2019.12.003
    J. Y. Cai, H. B. Jiang, L. Chen, J. Liu, Y. F. Cai, and J. Y. Wang, “Implementation and development of a trajectory tracking control system for intelligent vehicle,” J. Intell. Robot. Syst., vol. 94, no. 1, pp. 251–264, Apr. 2019. doi: 10.1007/s10846-018-0834-4
    M. L. Cummings, “Adaptation of human licensing examinations to the certification of autonomous systems,” in Safe, Autonomous and Intelligent Vehicles, H. F. Yu, X. Li, R. M. Murray, S. Ramesh, C. J. Tomlin, Eds. Cham, Switzerland: Springer, 2019, pp. 145–162.
    X. Z. Han, H. J. Kim, C. W. Jeon, H. C. Moon, J. H. Kim, and S. Y. Yi, “Application of a 3D tractor-driving simulator for slip estimation-based path-tracking control of auto-guided tillage operation,” Biosyst. Eng., vol. 178, pp. 70–85, Feb. 2019. doi: 10.1016/j.biosystemseng.2018.11.003
    J. Lowenberg-DeBoer, K. Behrendt, M. H. Ehlers, C. Dillon, A. Gabriel, I. Y. Huang, I. Kumwenda, T. Mark, A. Meyer-Aurich, G. Milics, K. O. Olagunju, S. M. Pedersen, J. Shockley, and D. Rose, “Lessons to be learned in adoption of autonomous equipment for field crops,” Appl. Econ. Perspect. Policy, vol. 44, no. 2, pp. 848–864, Jun. 2022. doi: 10.1002/aepp.13177
    T. Bakker, K. van Asselt, J. Bontsema, J. Müller, and G. van Straten, “Autonomous navigation using a robot platform in a sugar beet field,” Biosyst. Eng., vol. 109, no. 4, pp. 357–368, Aug. 2011. doi: 10.1016/j.biosystemseng.2011.05.001
    B. Cai, L. X. Zhang, and Y. Shi, “Observed-mode-dependent state estimation of hidden semi-Markov jump linear systems,” IEEE Trans. Automat. Contr., vol. 65, no. 1, pp. 442–449, Jan. 2020. doi: 10.1109/TAC.2019.2919114
    Z. G. Wu, S. L. Dong, H. Y. Su, and C. D. Li, “Asynchronous dissipative control for fuzzy Markov jump systems,” IEEE Trans. Cybern., vol. 48, no. 8, pp. 2426–2436, Aug. 2018. doi: 10.1109/TCYB.2017.2739754
    M. Q. Shen, J. H. Park, and D. Ye, “A separated approach to control of Markov jump nonlinear systems with general transition probabilities,” IEEE Trans. Cybern., vol. 46, no. 9, pp. 2010–2018, Sep. 2016. doi: 10.1109/TCYB.2015.2459717
    S. Y. Dong, H. Zhu, S. M. Zhong, K. B. Shi, and Y. J. Liu, “New study on fixed-time synchronization control of delayed inertial memristive neural networks,” Appl. Math. Comput., vol. 399, Jun. 2021.
    L. F. Hua, H. Zhu, K. B. Shi, S. M. Zhong, Y. Q. Tang, and Y. J. Liu, “Novel finite-time reliable control design for memristor-based inertial neural networks with mixed time-varying delays,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 68, no. 4, pp. 1599–1609, Apr. 2021. doi: 10.1109/TCSI.2021.3052210
    G. F. Xu, M. Z. Chen, X. K. He, H. X. Pang, H. Q. Miao, D. Cui, W. J. Wang, and S. Diao, “Path following control of tractor with an electro-hydraulic coupling steering system: Layered multi-loop robust control architecture,” Biosyst. Eng., vol. 209, pp. 282–299, Sep. 2021. doi: 10.1016/j.biosystemseng.2021.07.014
    Y. L. Shang, “Group consensus of multi-agent systems in directed networks with noises and time delays,” Int. J. Syst. Sci., vol. 46, no. 14, pp. 2481–2492, May 2015. doi: 10.1080/00207721.2013.862582
    Y. L. Shang, “Resilient consensus for expressed and private opinions,” IEEE Trans. Cybern., vol. 51, no. 1, pp. 318–331, Jan. 2021. doi: 10.1109/TCYB.2019.2939929
    A. H. Khan, Z. L. Shao, S. Li, Q. X. Wang, and N. Guan, “Which is the best PID variant for pneumatic soft robots? An experimental study” IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 451–460, Mar. 2020. doi: 10.1109/JAS.2020.1003045
    S. K. Pradhan and B. Subudhi, “Position control of a flexible manipulator using a new nonlinear self-tuning PID controller,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 136–149, Jan. 2020.
    A. Behera, T. K. Panigrahi, K. Ray, and A. K. Sahoo, “A novel cascaded PID controller for automatic generation control analysis with renewable sources,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 6, pp. 1438–1451, Nov. 2019. doi: 10.1109/JAS.2019.1911666
    L. Hu, X. Y. Pan, Z. H. Tan, and X. Luo, “A fast fuzzy clustering algorithm for complex networks via a generalized momentum method,” IEEE Trans. Fuzzy Syst., DOI: 10.1109/TFUZZ.2021.3117442.
    D. Wu, X. Luo, M. S. Shang, Y. He, G. Y. Wang, and X. D. Wu, “A data-characteristic-aware latent factor model for web services QoS prediction,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 6, pp. 2525–2538, Jun. 2022.
    X. Luo, Y. Yuan, S. L. Chen, N. Y. Zeng, and Z. D. Wang, “Position-transitional particle swarm optimization-incorporated latent factor analysis,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 8, pp. 3958–3970, Aug. 2022. doi: 10.1109/TKDE.2020.3033324
    B. Li, T. Acarman, Y. M. Zhang, L. L. Zhang, C. Yaman, and Q. Kong, “Tractor-trailer vehicle trajectory planning in narrow environments with a progressively constrained optimal control approach,” IEEE Trans. Intell. Veh., vol. 5, no. 3, pp. 414–425, Sep. 2020. doi: 10.1109/TIV.2019.2960943
    J. Tian, Q. K. Zeng, P. Wang, and X. Q. Wang, “Active steering control based on preview theory for articulated heavy vehicles,” PLoS One, vol. 16, no. 5, pp. 1–178, May 2021.
    Y. L. Shang, “Resilient consensus of switched multi-agent systems,” Syst. Control Lett., vol. 122, pp. 12–18, Dec. 2018. doi: 10.1016/j.sysconle.2018.10.001
    Y. Shang, “Interval consensus of switched multiagent systems,” Int. J. Syst. Sci., vol. 53, no. 2, pp. 351–362, Feb. 2022. doi: 10.1080/00207721.2021.1954721
    J. M. Collado and I. R. Petersen, “Correction to “A stabilization algorithm for a class of uncertain linear systems”,” Syst. Control Lett., vol. 11, no. 1, p. 83, Jul. 1988.
    Y. F. Chang, G. S. Zhai, B. Fu, and L. L. Xiong, “Quadratic stabilization of switched uncertain linear systems: A convex combination approach,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 5, pp. 1116–1126, Sep. 2019. doi: 10.1109/JAS.2019.1911681
    Y. B. Li, Q. Cao, and F. Liu, “Design of control system for driverless tractor,” MATEC Web Conf., vol. 309, p. 04001, Jan. 2020.
    E. Mousavinejad, X. H. Ge, Q.-L. Han, T. J. Lim, and L. Vlacic, “An ellipsoidal set-membership approach to distributed joint state and sensor fault estimation of autonomous ground vehicles,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 6, pp. 1107–1118, Jun. 2021. doi: 10.1109/JAS.2021.1004015
    Y. Zhang, K. Li, and W. L. Li, “Design and realization of unmanned multi-mode collaborative intelligent driving system,” SID Symp. Dig. Tech. Pap., vol. 51, no. S1, pp. 201–204, Jul. 2020. doi: 10.1002/sdtp.13789
  • 2022-0150-Experimental data(用于科学数据交汇管理).rar


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(9)

    Article Metrics

    Article views (166) PDF downloads(52) Cited by()


    DownLoad:  Full-Size Img  PowerPoint