A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 7.847, Top 10% (SCI Q1)
    CiteScore: 13.0, Top 5% (Q1)
    Google Scholar h5-index: 64, TOP 7
Turn off MathJax
Article Contents
T. Li, X. D. Sun, G. Lei, Z. B. Yang, Y. G. Guo, and J. G. Zhu, “Finite-control-set model predictive control of permanent magnet synchronous motor drive systems — An overview,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 12, pp. 2087–2105, Dec. 2022. doi: 10.1109/JAS.2022.105851
Citation: T. Li, X. D. Sun, G. Lei, Z. B. Yang, Y. G. Guo, and J. G. Zhu, “Finite-control-set model predictive control of permanent magnet synchronous motor drive systems — An overview,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 12, pp. 2087–2105, Dec. 2022. doi: 10.1109/JAS.2022.105851

Finite-Control-Set Model Predictive Control of Permanent Magnet Synchronous Motor Drive Systems — An Overview

doi: 10.1109/JAS.2022.105851
Funds:  This work was supported in part by the National Natural Science Foundation of China (51875261), the Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX21_3331), and the Faculty of Agricultural Equipment of Jiangsu University (NZXB20210103)
More Information
  • Permanent magnet synchronous motors (PMSMs) have been widely employed in the industry. Finite-control-set model predictive control (FCS-MPC), as an advanced control scheme, has been developed and applied to improve the performance and efficiency of the holistic PMSM drive systems. Based on the three elements of model predictive control, this paper provides an overview of the superiority of the FCS-MPC control scheme and its shortcomings in current applications. The problems of parameter mismatch, computational burden, and unfixed switching frequency are summarized. Moreover, other performance improvement schemes, such as the multi-vector application strategy, delay compensation scheme, and weight factor adjustment, are reviewed. Finally, future trends in this field is discussed, and several promising research topics are highlighted.

     

  • loading
  • [1]
    G. Lei, J. G. Zhu, Y. G. Guo, C. C. Liu, and B. Ma, “A review of design optimization methods for electrical machines,” Energies, vol. 10, no. 12, p. 1962, Nov. 2017. doi: 10.3390/en10121962
    [2]
    X. D. Sun, M. K. Wu, G. Lei, Y. G. Guo, and J. G. Zhu, “An improved model predictive current control for PMSM drives based on current track circle,” IEEE Trans. Ind. Electron., vol. 68, no. 5, pp. 3782–3793, May 2021. doi: 10.1109/TIE.2020.2984433
    [3]
    S. X. Niu, Y. X. Luo, W. N. Fu, and X. D. Zhang, “An indirect reference vector-based model predictive control for a three-phase PMSM motor,” IEEE Access, vol. 8, pp. 29435–29445, Jan. 2020.
    [4]
    Y. H. Hwang and J. Lee, “HEV motor comparison of IPMSM with Nd sintered magnet and heavy rare-earth free injection magnet in the same size,” IEEE Trans. Appl. Supercond., vol. 28, no. 3, p. 5206405, Apr. 2018.
    [5]
    X. D. Sun, Z. J. Jin, Y. F. Cai, Z. B. Yang, and L. Chen, “Grey wolf optimization algorithm based state feedback control for a bearingless permanent magnet synchronous machine,” IEEE Trans. Power Electron., vol. 35, no. 12, pp. 13631–13640, Dec. 2020. doi: 10.1109/TPEL.2020.2994254
    [6]
    X. F. Ding, H. Guo, R. Xiong, F. D. Chen, D. H. Zhang, and C. Gerada, “A new strategy of efficiency enhancement for traction systems in electric vehicles,” Appl. Energy, vol. 205, pp. 880–891, Nov. 2017. doi: 10.1016/j.apenergy.2017.08.051
    [7]
    E. Trancho, E. Ibarra, A. Arias, I. Kortabarria, P. Prieto, I. Martínez De Alegría, J. Andreu, and I. López, “Sensorless control strategy for light-duty EVs and efficiency loss evaluation of high frequency injection under standardized urban driving cycles,” Appl. Energy, vol. 224, pp. 647–658, Aug. 2018. doi: 10.1016/j.apenergy.2018.05.019
    [8]
    X. D. Sun, Z. Shi, Y. F. Cai, G. Lei, Y. G. Guo, and J. G. Zhu, “Driving-cycle-oriented design optimization of a permanent magnet hub motor drive system for a four-wheel-drive electric vehicle,” IEEE Trans. Transp. Electrific., vol. 6, no. 3, pp. 1115–1125, Sept. 2020. doi: 10.1109/TTE.2020.3009396
    [9]
    H. Yao, Y. Yan, T. N. Shi, G. Z. Zhang, Z. Q. Wang, and C. L. Xia, “A novel svpwm scheme for field-oriented vector-controlled PMSM drive system fed by cascaded H-bridge inverter,” IEEE Trans. Power Electron., vol. 36, no. 8, pp. 8988–9000, Aug. 2021. doi: 10.1109/TPEL.2021.3054642
    [10]
    Q. F. Zhang, H. H. Guo, C. Guo, Y. C. Liu, D. Wang, K. Y. Lu, Z. R. Zhang, X. Z. Zhuang, and D. Z. Chen, “An adaptive proportional-integral-resonant controller for speed ripple suppression of PMSM drive due to current measurement error,” Int. J. Electr. Power Energy Syst., vol. 129, p. 106866, Jul. 2021. doi: 10.1016/j.ijepes.2021.106866
    [11]
    S. Vaez-Zadeh, “Analysis of a DTC with back emf oriented voltage for PMS motor drives,” IEEE Trans. Energy Convers., vol. 33, no. 3, pp. 1594–1596, Sept. 2018. doi: 10.1109/TEC.2018.2849858
    [12]
    Y. Z. Zhou, X. G. Lin, and M. Cheng, “A fault-tolerant direct torque control for six-phase permanent magnet synchronous motor with arbitrary two opened phases based on modified variables,” IEEE Trans. Energy Convers., vol. 31, no. 2, pp. 549–556, Jun. 2016. doi: 10.1109/TEC.2015.2504376
    [13]
    X. D. Sun, K. K. Diao, G. Lei, Y. G. Guo, and J. G. Zhu, “Direct torque control based on a fast modeling method for a segmented-rotor switched reluctance motor in HEV application,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 9, no. 1, pp. 232–241, Feb. 2021. doi: 10.1109/JESTPE.2019.2950085
    [14]
    X. D. Sun, L. Chen, H. B. Jiang, Z. B. Yang, J. F. Chen, and W. Y. Zhang, “High-performance control for a bearingless permanent-magnet synchronous motor using neural network inverse scheme plus internal model controllers,” IEEE Trans. Ind. Electron., vol. 63, no. 6, pp. 3479–3488, Jun. 2016. doi: 10.1109/TIE.2016.2530040
    [15]
    Z. W. Ping, Q. C. Ma, T. Wang, Y. Z. Huang, and J. G. Lu, “Speed tracking control of permanent magnet synchronous motor by a novel two-step internal model control approach,” Int. J. Control Autom. Syst., vol. 16, no. 6, pp. 2754–2762, Dec. 2018. doi: 10.1007/s12555-018-0255-y
    [16]
    X. D. Sun, Z. Shi, L. Chen, and Z. B. Yang, “Internal model control for a bearingless permanent magnet synchronous motor based on inverse system method,” IEEE Trans. Energy Convers., vol. 31, no. 4, pp. 1539–1548, Dec. 2016. doi: 10.1109/TEC.2016.2591925
    [17]
    Z. W. Ping, T. Wang, Y. Z. Huang, H. Wang, J. G. Lu, and Y. Y. Li, “Internal model control of PMSM position servo system: Theory and experimental results,” IEEE Trans. Ind. Inf., vol. 16, no. 4, pp. 2202–2211, Apr. 2020. doi: 10.1109/TII.2019.2935248
    [18]
    P. Gao, G. M. Zhang, H. M. Ouyang, and L. Mei, “An adaptive super twisting nonlinear fractional order PID sliding mode control of permanent magnet synchronous motor speed regulation system based on extended state observer,” IEEE Access, vol. 8, pp. 53498–53510, Mar. 2020.
    [19]
    Z. J. Jin, X. D. Sun, G. Lei, Y. G. Guo, and J. G. Zhu, “Sliding mode direct torque control of SPMSMS based on a hybrid wolf optimization algorithm,” IEEE Trans. Ind. Electron., vol. 69, no. 5, pp. 4534–4544, May 2022. doi: 10.1109/TIE.2021.3080220
    [20]
    X. D. Sun, M. K. Wu, Z. B. Yang, G. Lei, and Y. G. Guo, “High-performance control for a permanent-magnet linear synchronous generator using state feedback control scheme plus grey wolf optimisation,” IET Electr. Power Appl., vol. 14, no. 5, pp. 771–780, May 2020. doi: 10.1049/iet-epa.2019.0383
    [21]
    T. Tarczewski and L. M. Grzesiak, “Constrained state feedback speed control of PMSM based on model predictive approach,” IEEE Trans. Ind. Electron., vol. 63, no. 6, pp. 3867–3875, Jun. 2016. doi: 10.1109/TIE.2015.2497302
    [22]
    Z. G. Yin, Y. X. Gu, C. Du, and F. T. Gao, “Research on back-stepping control of permanent magnet linear synchronous motor based on extended state observer,” in Proc. IEEE Int. Power Electronics and Application Conf. and Expo., Shenzhen, China, 2018, pp. 179–183.
    [23]
    X. D. Sun, C. C. Hu, G. Lei, Y. G. Guo, and J. G. Zhu, “State feedback control for a PM hub motor based on gray wolf optimization algorithm,” IEEE Trans. Power Electron., vol. 35, no. 1, pp. 1136–1146, Jan. 2020. doi: 10.1109/TPEL.2019.2923726
    [24]
    X. F. Wang, X. C. Fang, S. Lin, F. Lin, and Z. Yang, “Predictive common-mode voltage suppression method based on current ripple for permanent magnet synchronous motors,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 7, no. 2, pp. 946–955, Jun. 2019. doi: 10.1109/JESTPE.2019.2896158
    [25]
    M. Liu, K. W. Chan, J. F. Hu, W. Z. Xu, and J. Rodriguez, “Model predictive direct speed control with torque oscillation reduction for PMSM drives,” IEEE Trans. Ind. Inf., vol. 15, no. 9, pp. 4944–4956, Sept. 2019. doi: 10.1109/TII.2019.2898004
    [26]
    S. Chai, L. Wang, and E. Rogers, “A cascade MPC control structure for a PMSM with speed ripple minimization,” IEEE Trans. Ind. Electron., vol. 60, no. 8, pp. 2978–2987, Aug. 2013. doi: 10.1109/TIE.2012.2201432
    [27]
    X. D. Sun, C. C. Hu, J. G. Zhu, S. H. Wang, W. Q. Zhou, Z. B. Yang, G. Lei, K. Li, B. Zhu, and Y. G. Guo, “MPTC for PMSMs of EVs with multi-motor driven system considering optimal energy allocation,” IEEE Trans. Magn., vol. 55, no. 7, p. 8104306, Jul. 2019.
    [28]
    J. Rodriguez, M. Kazmierkowski, J. R. Espinoza, Zanchetta, H. Abu-Rub, H. A. Young, and C. A. Rojas, “State of the art of finite control set model predictive control in power electronics,” IEEE Trans. Ind. Inf., vol. 9, no. 2, pp. 1003–1016, May 2013. doi: 10.1109/TII.2012.2221469
    [29]
    F. Villarroel, J. R. Espinoza, C. A. Rojas, J. Rodriguez, M. Rivera, and D. Sbarbaro, “Multiobjective switching state selector for finite-states model predictive control based on fuzzy decision making in a matrix converter,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 589–599, Feb. 2013. doi: 10.1109/TIE.2012.2206343
    [30]
    J. L. Elizondo, A. Olloqui, M. Rivera, M. E. Macias, O. Probst, O. M. Micheloud, and J. Rodriguez, “Model-based predictive rotor current control for grid synchronization of a DFIG driven by an indirect matrix converter,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 2, no. 4, pp. 715–726, Dec. 2014. doi: 10.1109/JESTPE.2014.2349952
    [31]
    J. Rodriguez, C. Garcia, A. Mora, F. Flores-Bahamonde, Acuna, M. Novak, Y. C. Zhang, L. Tarisciotti, S. A. Davari, Z. B. Zhang, F. X. Wang, M. Norambuena, T. Dragicevic, F. Blaabjerg, T. Geyer, R. Kennel, D. A. Khaburi, M. Abdelrahem, Z. Zhang, N. Mijatovic, and R. Aguilera, “Latest advances of model predictive control in electrical drives — Part I: Basic concepts and advanced strategies,” IEEE Trans. Power Electron., vol. 37, no. 4, pp. 3927–3942, Apr. 2022. doi: 10.1109/TPEL.2021.3121532
    [32]
    J. Rodriguez, C. Garcia, A. Mora, S. A. Davari, J. Rodas, D. F. Valencia, M. Elmorshedy, F. X. Wang, K. K. Zuo, L. Tarisciotti, F. Flores-Bahamonde, W. Xu, Z. B. Zhang, Y. C. Zhang, M. Norambuena, A. Emadi, T. Geyer, R. Kennel, T. Dragicevic, D. A. Khaburi, Z. Zhang, M. Abdelrahem, and N. Mijatovic, “Latest advances of model predictive control in electrical drives. Part II: Applications and benchmarking with classical control methods,” IEEE Trans. Power Electron., vol. 37, no. 5, pp. 5047–5061, May 2022. doi: 10.1109/TPEL.2021.3121589
    [33]
    D. D. Su, C. N. Zhang, and Y. G. Dong, “Finite-state model predictive current control for surface-mounted permanent magnet synchronous motors based on current locus,” IEEE Access, vol. 5, pp. 27366–27375, Nov. 2017.
    [34]
    F. X. Wang, S. H. Li, X. Z. Mei, W. Xie, J. Rodríguez, and R. M. Kennel, “Model-based predictive direct control strategies for electrical drives: An experimental evaluation of PTC and PCC methods,” IEEE Trans. Ind. Inf., vol. 11, no. 3, pp. 671–681, Jun. 2015. doi: 10.1109/TII.2015.2423154
    [35]
    M. Preindl and S. Bolognani, “Model predictive direct torque control with finite control set for PMSM drive systems, Part 1: Maximum torque per ampere operation,” IEEE Trans. Ind. Inf., vol. 9, no. 4, pp. 1912–1921, Nov. 2013. doi: 10.1109/TII.2012.2227265
    [36]
    O. Sandre-Hernandez, J. De Jesus Rangel-Magdaleno, and R. Morales-Caporal, “Modified model predictive torque control for a PMSM-drive with torque ripple minimisation,” IET Power Electron., vol. 12, no. 5, pp. 1033–1042, May 2019. doi: 10.1049/iet-pel.2018.5525
    [37]
    X. D. Sun, M. K. Wu, C. F. Yin, and S. H. Wang, “Model predictive thrust force control for linear motor actuator used in active suspension,” IEEE Trans. Energy Convers., vol. 36, no. 4, pp. 3063–3072, Dec. 2021. doi: 10.1109/TEC.2021.3069843
    [38]
    Q. Fei, Y. T. Deng, H. W. Li, J. Liu, and M. Shao, “Speed ripple minimization of permanent magnet synchronous motor based on model predictive and iterative learning controls,” IEEE Access, vol. 7, pp. 31791–31800, Mar. 2019.
    [39]
    E. J. Fuentes, C. A. Silva, and J. I. Yuz, “Predictive speed control of a two-mass system driven by a permanent magnet synchronous motor,” IEEE Trans. Ind. Electron., vol. 59, no. 7, pp. 2840–2848, Jul. 2012. doi: 10.1109/TIE.2011.2158767
    [40]
    Kakosimos and H. Abu-Rub, “Predictive speed control with short prediction horizon for permanent magnet synchronous motor drives,” IEEE Trans. Power Electron., vol. 33, no. 3, pp. 2740–2750, Mar. 2018. doi: 10.1109/TPEL.2017.2697971
    [41]
    M. Preindl and S. Bolognani, “Model predictive direct speed control with finite control set of PMSM drive systems,” IEEE Trans. Power Electron., vol. 28, no. 2, pp. 1007–1015, Feb. 2013. doi: 10.1109/TPEL.2012.2204277
    [42]
    L. M. Yan, M. F. Dou, and Z. G. Hua, “Disturbance compensation-based model predictive flux control of SPMSM with optimal duty cycle,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 7, no. 3, pp. 1872–1882, Sept. 2019. doi: 10.1109/JESTPE.2018.2859979
    [43]
    S. D. Huang, G. Wu, F. Rong, C. F. Zhang, S. Huang, and Q. W. Wu, “Novel predictive stator flux control techniques for PMSM drives,” IEEE Trans. Power Electron., vol. 34, no. 9, pp. 8916–8929, Sept. 2019. doi: 10.1109/TPEL.2018.2884984
    [44]
    X. D. Sun, T. Li, M. Yao, G. Lei, Y. G. Guo, and J. G. Zhu, “Improved finite-control-set model predictive control with virtual vectors for PMSHM drives,” IEEE Trans. Energy Convers., vol. 37, no. 3, pp. 1885–1894, Sept. 2022.
    [45]
    F. Yu, X. Liu, Z. H. Zhu, and J. F. Mao, “An improved finite-control-set model predictive flux control for asymmetrical six-phase PMSMS with a novel duty-cycle regulation strategy,” IEEE Trans. Energy Convers., vol. 36, no. 2, pp. 1289–1299, Jun. 2021. doi: 10.1109/TEC.2020.3031067
    [46]
    Y. N. Zhou, H. M. Li, R. D. Liu, and J. K. Mao, “Continuous voltage vector model-free predictive current control of surface mounted permanent magnet synchronous motor,” IEEE Trans. Energy Convers., vol. 34, no. 2, pp. 899–908, Jun. 2019.
    [47]
    F. X. Wang, L. He, and J. Rodriguez, “FPGA-based continuous control set model predictive current control for PMSM system using multistep error tracking technique,” IEEE Trans. Power Electron., vol. 35, no. 12, pp. 13455–13464, Dec. 2020. doi: 10.1109/TPEL.2020.2984336
    [48]
    A. A. Ahmed, B. K. Koh, and Y. I. Lee, “A comparison of finite control set and continuous control set model predictive control schemes for speed control of induction motors,” IEEE Trans. Ind. Inform., vol. 14, no. 4, pp. 1334–1346, Apr. 2018. doi: 10.1109/TII.2017.2758393
    [49]
    S. Kouro, M. A. Perez, J. Rodriguez, A. M. Llor, and H. A. Young, “Model predictive control: MPC’s role in the evolution of power electronics,” IEEE Ind. Electron. Mag., vol. 9, no. 4, pp. 8–21, Dec. 2015. doi: 10.1109/MIE.2015.2478920
    [50]
    C. S. Lim, E. Levi, M. Jones, N. A. Rahim, and W. Hew, “FCS-MPC-based current control of a five-phase induction motor and its comparison with PI-PWM control,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 149–163, Jan. 2014. doi: 10.1109/TIE.2013.2248334
    [51]
    Y. X. Luo and C. H. Liu, “Multi-vector-based model predictive torque control for a six-phase PMSM motor with fixed switching frequency,” IEEE Trans. Energy Convers., vol. 34, no. 3, pp. 1369–1379, Sept. 2019. doi: 10.1109/TEC.2019.2917616
    [52]
    J. Q. Gao, C. Gong, W. Z. Li, and J. L. Liu, “Novel compensation strategy for calculation delay of finite control set model predictive current control in PMSM,” IEEE Trans. Ind. Electron., vol. 67, no. 7, pp. 5816–5819, Jul. 2020. doi: 10.1109/TIE.2019.2934060
    [53]
    S. Ichikawa, M. Tomita, S. Doki, and S. Okuma, “Sensorless control of permanent-magnet synchronous motors using online parameter identification based on system identification theory,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 363–372, Apr. 2006. doi: 10.1109/TIE.2006.870875
    [54]
    S. Vazquez, J. Rodriguez, M. Rivera, L. G. Franquelo, and M. Norambuena, “Model predictive control for power converters and drives: Advances and trends,” IEEE Trans. Ind. Electron., vol. 64, no. 2, pp. 935–947, Feb. 2017. doi: 10.1109/TIE.2016.2625238
    [55]
    J. F. Hu, Y. H. Shan, J. M. Guerrero, A. Ioinovici, K. W. Chan, and J. Rodriguez, “Model predictive control of microgrids — An overview,” Renew. Sustain. Energy Rev., vol. 136, p. 110422, Feb. 2021. doi: 10.1016/j.rser.2020.110422
    [56]
    A. Andersson and T. Thiringer, “Assessment of an improved finite control set model predictive current controller for automotive propulsion applications,” IEEE Trans. Ind. Electron., vol. 67, no. 1, pp. 91–100, Jan. 2020. doi: 10.1109/TIE.2019.2898603
    [57]
    W. H. Chen, J. Yang, L. Guo, and S. H. Li, “Disturbance-observer-based control and related methods — An overview,” IEEE Trans. Ind. Electron., vol. 63, no. 2, pp. 1083–1095, Feb. 2016. doi: 10.1109/TIE.2015.2478397
    [58]
    A. Damiano, G. Gatto, I. Marongiu, A. Perfetto, and A. Serpi, “Operating constraints management of a surface-mounted PM synchronous machine by means of an FPGA-based model predictive control algorithm,” IEEE Trans. Ind. Inform., vol. 10, no. 1, pp. 243–255, Feb. 2014. doi: 10.1109/TII.2013.2261304
    [59]
    T. Zanma, S. Tozawa, Y. Takagi, K. Koiwa, and K. Z. Liu, “Optimal voltage vector in current control of PMSM considering torque ripple and reduction of the number of switching operations,” IET Power Electron., vol. 13, no. 6, pp. 1200–1206, May 2020. doi: 10.1049/iet-pel.2019.0701
    [60]
    H. T. Nguyen and J.-W. Jung, “Asymptotic stability constraints for direct horizon-one model predictive control of SPMSM drives,” IEEE Trans. Power Electron., vol. 33, no. 10, pp. 8213–8219, Oct. 2018.
    [61]
    S. Lin, X. Fang, X. Wang, Z. Yang and F. Lin, “Multiobjective model predictive current control method of permanent magnet synchronous traction motors with multiple current bounds in railway application,” IEEE Trans. Ind. Electron., vol. 69, no. 12, pp. 12348–12357, Dec. 2022.
    [62]
    J. Yang, W. H. Chen, S. H. Li, L. Guo, and Y. D. Yan, “Disturbance/uncertainty estimation and attenuation techniques in PMSM drives — A survey,” IEEE Trans. Ind. Electron., vol. 64, no. 4, pp. 3273–3285, Apr. 2017. doi: 10.1109/TIE.2016.2583412
    [63]
    X. D. Sun, Y. Zhang, Y. F. Cai, and X. Tian, “Compensated deadbeat predictive current control considering disturbance and VSI non-linearity for in-wheel PMSMs,” IEEE/ASME Trans. Mechatron., 2021, DOI: 10.1109/TMECH.2021.3135936.
    [64]
    Y. A. R. I. Mohamed, “Design and implementation of a robust current-control scheme for a PMSM vector drive with a simple adaptive disturbance observer,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 1981–1988, Aug. 2007. doi: 10.1109/TIE.2007.895074
    [65]
    M. Abdelrahem, C. M. Hackl, Z. B. Zhang, and R. Kennel, “Robust predictive control for direct-driven surface-mounted permanent-magnet synchronous generators without mechanical sensors,” IEEE Trans. Energy Convers., vol. 33, no. 1, pp. 179–189, Mar. 2018. doi: 10.1109/TEC.2017.2744980
    [66]
    X. D. Sun, Y. Zhang, G. Lei, Y. G. Guo, and J. G. Zhu, “An improved deadbeat predictive stator flux control with reduced-order disturbance observer for in-wheel PMSMs,” IEEE/ASME Trans. Mechatron., vol. 27, no. 2, pp. 690–700, Apr. 2022. doi: 10.1109/TMECH.2021.3068973
    [67]
    C. F. Zhang, G. Wu, F. Rong, J. H. Feng, L. H. Jia, J. He, and S. D. Huang, “Robust fault-tolerant predictive current control for permanent magnet synchronous motors considering demagnetization fault,” IEEE Trans. Ind. Electron., vol. 65, no. 7, pp. 5324–5334, Jul. 2018. doi: 10.1109/TIE.2017.2774758
    [68]
    G. J. Pei, L. Y. Li, X. N. Gao, J. X. Liu, and R. Kennel, “Predictive current trajectory control for PMSM at voltage limit,” IEEE Access, vol. 8, pp. 1670–1679, Jan. 2020.
    [69]
    T. X. Li, R. Q. Ma, and W. J. Han, “Virtual-vector-based model predictive current control of five-phase PMSM with stator current and concentrated disturbance observer,” IEEE Access, vol. 8, pp. 212635–212646, Dec. 2020.
    [70]
    S. X. Niu, Y. X. Luo, W. N. Fu, and X. D. Zhang, “Robust model predictive control for a three-phase PMSM motor with improved control precision,” IEEE Trans. Ind. Electron., vol. 68, no. 1, pp. 838–849, Jan. 2021. doi: 10.1109/TIE.2020.3013753
    [71]
    F. Mwasilu, H. T. Nguyen, H. H. Choi, and J. W. Jung, “Finite set model predictive control of interior PM synchronous motor drives with an external disturbance rejection technique,” IEEE/ASME Trans. Mechatron., vol. 22, no. 2, pp. 762–773, Apr. 2017. doi: 10.1109/TMECH.2016.2632859
    [72]
    X. G. Zhang, L. Zhang, and Y. C. Zhang, “Model predictive current control for PMSM drives with parameter robustness improvement,” IEEE Trans. Power Electron., vol. 34, no. 2, pp. 1645–1657, Feb. 2019. doi: 10.1109/TPEL.2018.2835835
    [73]
    X. G. Zhang, Y. Cheng, and L. Zhang, “Disturbance-deadbeat inductance observer-based current predictive control for surface-mounted permanent magnet synchronous motors drives,” IET Power Electron., vol. 13, no. 6, pp. 1172–1180, May 2020. doi: 10.1049/iet-pel.2019.0727
    [74]
    C. K. Lin, T. H. Liu, J. T. Yu, L. C. Fu, and C. F. Hsiao, “Model-free predictive current control for interior permanent-magnet synchronous motor drives based on current difference detection technique,” IEEE Trans. Ind. Electron., vol. 61, no. 2, pp. 667–681, Feb. 2014. doi: 10.1109/TIE.2013.2253065
    [75]
    M. S. Mubarok and T. H. Liu, “Implementation of predictive controllers for matrix-converter-based interior permanent magnet synchronous motor position control systems,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 7, no. 1, pp. 261–273, Mar. 2019. doi: 10.1109/JESTPE.2018.2873151
    [76]
    C. K. Lin, J. T. Yu, Y. S. Lai, H. C. Yu, Y. H. Lin, and F. M. Chen, “Simplified model-free predictive current control for interior permanent magnet synchronous motors,” Electron. Lett., vol. 52, no. 1, pp. 49–50, 2016. doi: 10.1049/el.2015.2372
    [77]
    C. K. Lin, J. T. Yu, Y. S. Lai, and H. C. Yu, “Improved model-free predictive current control for synchronous reluctance motor drives,” IEEE Trans. Ind. Electron., vol. 63, no. 6, pp. 3942–3953, Jun. 2016. doi: 10.1109/TIE.2016.2527629
    [78]
    C. A. Agustin, J. T. Yu, Y. S. Cheng, C. K. Lin, and Y. W. Yi, “A synchronized current difference updating technique for model-free predictive current control of PMSM drives,” IEEE Access, vol. 9, pp. 63306–63318, May 2021.
    [79]
    X. Li, Y. Wang, X. Guo, X. Cui, S. Zhang, and Y. Li, “An improved model-free current predictive control method for SPMSM drives,” IEEE Access, vol. 9, pp. 134672–134681, 2021.
    [80]
    X. Yuan, S. Zhang, C. N. Zhang, A. Galassini, G. Buticchi, and M. Degano, “Improved model predictive current control for SPMSM drives using current update mechanism,” IEEE Trans. Ind. Electron., vol. 68, no. 3, pp. 1938–1948, Mar. 2021. doi: 10.1109/TIE.2020.2973880
    [81]
    X. Yuan, S. Zhang, and C. N. Zhang, “Nonparametric predictive current control for PMSM,” IEEE Trans. Power Electron., vol. 35, no. 9, pp. 9332–9341, Sept. 2020. doi: 10.1109/TPEL.2020.2970173
    [82]
    Z. Y. Chen, J. Q. Qiu, and M. J. Jin, “Adaptive finite-control-set model predictive current control for IPMSM drives with inductance variation,” IET Electr. Power Appl., vol. 11, no. 5, pp. 874–884, May 2017. doi: 10.1049/iet-epa.2016.0861
    [83]
    S. Wang, R. J. Zhao, W. M. Chen, G. D. Li, and C. Liu, “Parameter identification of PMSM based on windowed least square algorithm,” Adv. Mater. Res., vol. 383-390, pp. 5940–5944, Nov. 2011. doi: 10.4028/www.scientific.net/AMR.383-390.5940
    [84]
    N. Urasaki, Y. Noguchi, A. M. Howlader, Y. Yonaha, A. Yona, and T. Senjyu, “Wide-speed range operation of interior permanent magnet synchronous motor with parameter identification,” Electric Power Compon. Syst., vol. 37, no. 8, pp. 847–865, Jun. 2009. doi: 10.1080/15325000902817218
    [85]
    Y. C. Shi, K. Sun, L. Huang, and Y. D. Li, “Online identification of permanent magnet flux based on extended kalman filter for IPMSM drive with position sensorless control,” IEEE Trans. Ind. Electron., vol. 59, no. 11, pp. 4169–4178, Nov. 2012. doi: 10.1109/TIE.2011.2168792
    [86]
    C. Q. Zhong and Y. Y. Lin, “Model reference adaptive control (MRAC)-based parameter identification applied to surface-mounted permanent magnet synchronous motor,” Int. J. Electron., vol. 104, no. 11, pp. 1854–1873, Jun. 2017. doi: 10.1080/00207217.2017.1329946
    [87]
    Y. Chen, F. Zhou, X. Liu, and E. Hu, “Online adaptive parameter identification of PMSM based on the dead-time compensation,” Int. J. Electron., vol. 102, no. 7, pp. 1132–1150, Jul. 2015. doi: 10.1080/00207217.2014.966334
    [88]
    Z. Q. Wang, M. B. Yang, L. Gao, Z. X. Wang, G. Z. Zhang, H. M. Wang, and X. Gu, “Deadbeat predictive current control of permanent magnet synchronous motor based on variable step-size adaline neural network parameter identification,” IET Electr. Power Appl., vol. 14, no. 11, pp. 2007–2015, Nov. 2020. doi: 10.1049/iet-epa.2019.0710
    [89]
    O. Wallscheid and J. Böcker, “Global identification of a low-order lumped-parameter thermal network for permanent magnet synchronous motors,” IEEE Trans. Energy Convers., vol. 31, no. 1, pp. 354–365, Mar. 2016. doi: 10.1109/TEC.2015.2473673
    [90]
    G. Gatto, I. Marongiu, and A. Serpi, “Discrete-time parameter identification of a surface-mounted permanent magnet synchronous machine,” IEEE Trans. Ind. Electron., vol. 60, no. 11, pp. 4869–4880, Nov. 2013. doi: 10.1109/TIE.2012.2221113
    [91]
    J. Sawma, F. Khatounian, E. Monmasson, L. Idkhajine, and R. Ghosn, “Analysis of the impact of online identification on model predictive current control applied to permanent magnet synchronous motors,” IET Electr. Power Appl., vol. 11, no. 5, pp. 864–873, May 2017. doi: 10.1049/iet-epa.2016.0513
    [92]
    L. H. Wang, G. J. Tan, and J. Meng, “Research on model predictive control of IPMSM based on adaline neural network parameter identification,” Energies, vol. 12, no. 24, p. 4803, Dec. 2019. doi: 10.3390/en12244803
    [93]
    A. Brosch, S. Hanke, O. Wallscheid, and J. Böcker, “Data-driven recursive least squares estimation for model predictive current control of permanent magnet synchronous motors,” IEEE Trans. Power Electron., vol. 36, no. 2, pp. 2179–2190, Feb. 2021. doi: 10.1109/TPEL.2020.3006779
    [94]
    H. Ahn, H. Park, C. Kim, and H. Lee, “A review of state-of-the-art techniques for PMSM parameter identification,” J. Electr. Eng. Technol., vol. 15, no. 3, pp. 1177–1187, Mar. 2020. doi: 10.1007/s42835-020-00398-6
    [95]
    M. S. Rafaq and J. W. Jung, “A comprehensive review of state-of-the-art parameter estimation techniques for permanent magnet synchronous motors in wide speed range,” IEEE Trans. Ind. Inf., vol. 16, no. 7, pp. 4747–4758, Jul. 2020. doi: 10.1109/TII.2019.2944413
    [96]
    M. Preindl and S. Bolognani, “Model predictive direct torque control with finite control set for PMSM drive systems, part 2: Field weakening operation,” IEEE Trans. Ind. Inf., vol. 9, no. 2, pp. 648–657, May 2013. doi: 10.1109/TII.2012.2220353
    [97]
    L. Chen, H. Xu, and X. D. Sun, “A novel strategy of control performance improvement for six-phase permanent magnet synchronous hub motor drives of EVs under new european driving cycle,” IEEE Trans. Veh. Technol., vol. 70, no. 6, pp. 5628–5637, Jun. 2021. doi: 10.1109/TVT.2021.3079576
    [98]
    M. Uddin, S. Mekhilef, M. Mubin, M. Rivera, and J. Rodriguez, “Model predictive torque ripple reduction with weighting factor optimization fed by an indirect matrix converter,” Electr. Power Compon. Syst., vol. 42, no. 10, pp. 1059–1069, Jun. 2014. doi: 10.1080/15325008.2014.913739
    [99]
    Z. Song, F. Zhou, Y. Yu, R. Zhang, and S. Hu, “Open-phase fault-tolerant predictive control strategy for open-end-winding permanent magnet synchronous machines without postfault controller reconfiguration,” IEEE Trans. Ind. Electron., vol. 68, no. 5, pp. 3770–3781, May 2021.
    [100]
    X. G. Wang, W. Xu, Y. Zhao, and X. H. Li, “Modified MPC algorithm for NPC inverter fed disc coreless permanent magnet synchronous motor,” IEEE Trans. Appl. Supercond., vol. 26, no. 7, p. 0608505, Oct. 2016.
    [101]
    W. S. Wang, Y. Fan, S. Y. Chen, and Q. S. Zhang, “Finite control set model predictive current control of a five-phase PMSM with virtual voltage vectors and adaptive control set,” CES Trans. Electr. Mach. Syst., vol. 2, no. 1, pp. 136–141, Mar. 2018. doi: 10.23919/TEMS.2018.8326460
    [102]
    Y. Yan, S. Wang, C. L. Xia, H. M. Wang, and T. N. Shi, “Hybrid control set-model predictive control for field-oriented control of VSI-PMSM,” IEEE Trans. Energy Convers., vol. 31, no. 4, pp. 1622–1633, Dec. 2016. doi: 10.1109/TEC.2016.2598154
    [103]
    Y. X. Luo and C. H. Liu, “A flux constrained predictive control for a six-phase PMSM motor with lower complexity,” IEEE Trans. Ind. Electron., vol. 66, no. 7, pp. 5081–5093, Jul. 2019. doi: 10.1109/TIE.2018.2868301
    [104]
    X. Gu, Sh en, X. M. Li, G. Z. Zhang, Z. Q. Wang, and T. N. Shi, “Improved vector selection based model predictive torque control for IPMSM,” IET Electr. Power Appl., vol. 14, no. 1, pp. 139–146, Jan. 2020. doi: 10.1049/iet-epa.2019.0095
    [105]
    P. Kakosimos, S. Bayhan, and H. Abu-Rub, “Predictive control with uniform switching transitions and reduced calculation requirements,” in Proc. 43rd Annu. Conf. IEEE Industrial Electronics Society, Beijing, China, 2017, pp. 6342–6347.
    [106]
    W. Xie, X. C. Wang, F. X. Wang, W. Xu, R. M. Kennel, D. Gerling, and R. D. Lorenz, “Finite-control-set model predictive torque control with a deadbeat solution for PMSM drives,” IEEE Trans. Ind. Electron., vol. 62, no. 9, pp. 5402–5410, Sept. 2015. doi: 10.1109/TIE.2015.2410767
    [107]
    Y. C. Zhang, D. L. Xu, J. L. Liu, S. Y. Gao, and W. Xu, “Performance improvement of model-predictive current control of permanent magnet synchronous motor drives,” IEEE Trans. Ind. Appl., vol. 53, no. 4, pp. 3683–3695, Jul.–Aug. 2017. doi: 10.1109/TIA.2017.2690998
    [108]
    Y. H. Li, Y. G. Qin, Y. F. Zhou, and C. H. Zhao, “Model predictive torque control for permanent magnet synchronous motor based on dynamic finite-control-set using fuzzy control,” Energy Rep., vol. 6, no. S9, pp. 128–133, Dec. 2020.
    [109]
    J. Rodriguez, J. Pontt, C. A. Silva, Correa, Lezana, Cortes, and U. Ammann, “Predictive current control of a voltage source inverter,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 495–503, Feb. 2007. doi: 10.1109/TIE.2006.888802
    [110]
    Cortés, J. Rodríguez, Antoniewicz, and M. Kazmierkowski, “Direct power control of an AFE using predictive control,” IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2516–2523, Sept. 2008. doi: 10.1109/TPEL.2008.2002065
    [111]
    R. O. Ramírez, C. R. Baier, F. Villarroel, J. R. Espinoza, J. Pou, and J. Rodríguez, “A hybrid FCS-MPC with low and fixed switching frequency without steady-state error applied to a grid-connected CHB inverter,” IEEE Access, vol. 8, pp. 223637–223651, Dec. 2020.
    [112]
    R. O. Ramírez, C. R. Baier, J. Espinoza, and F. Villarroel, “Finite control set MPC with fixed switching frequency applied to a grid connected single-phase cascade h-bridge inverter,” Energies, vol. 13, no. 20, p. 5475, Oct. 2020. doi: 10.3390/en13205475
    [113]
    X. Zhang, G. J. Tan, T. Xia, Q. Wang, and X. Wu, “Optimized switching finite control set model predictive control of NPC single-phase three-level rectifiers,” IEEE Trans. Power Electron., vol. 35, no. 10, pp. 10097–10108, Oct. 2020. doi: 10.1109/TPEL.2020.2978185
    [114]
    C. Xiong, H. Xu, T. Guan, and Zhou, “A Constant switching frequency multiple-vector-based model predictive current control of five-phase PMSM with nonsinusoidal back EMF,” IEEE Trans. Ind. Electron., vol. 67, no. 3, pp. 1695–1707, Mar. 2020. doi: 10.1109/TIE.2019.2907502
    [115]
    F. Zhang, T. Peng, H. B. Dan, J. H. Lin, and M. Su, “Modulated model predictive control of permanent magnet synchronous motor,” in Proc. IEEE Int. Conf. Industrial Electronics for Sustainable Energy Systems, Hamilton, New Zealand, 2018, pp. 130–133.
    [116]
    S. S. Yeoh, T. Yang, L. Tarisciotti, C. I. Hill, S. Bozhko, and Zanchetta, “Permanent-magnet machine-based starter–generator system with modulated model predictive control,” IEEE Trans. Transp. Electrific., vol. 3, no. 4, pp. 878–890, Dec. 2017. doi: 10.1109/TTE.2017.2731626
    [117]
    C. F. Garcia, C. A. Silva, J. R. Rodriguez, Zanchetta, and S. A. Odhano, “Modulated model-predictive control with optimized overmodulation,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 7, no. 1, pp. 404–413, Mar. 2019. doi: 10.1109/JESTPE.2018.2828198
    [118]
    Q. Wang, H. T. Yu, C. Li, X. Y. Lang, S. S. Yeoh, T. Yang, M. Rivera, S. Bozhko, and Wheeler, “A low-complexity optimal switching time-modulated model-predictive control for PMSM with three-level NPC converter,” IEEE Trans. Transp. Electrific., vol. 6, no. 3, pp. 1188–1198, Sept. 2020. doi: 10.1109/TTE.2020.3012352
    [119]
    S. G. Petkar, K. Eshwar, and V. K. Thippiripati, “A modified model predictive current control of permanent magnet synchronous motor drive,” IEEE Trans. Ind. Electron., vol. 68, no. 2, pp. 1025–1034, Feb. 2021. doi: 10.1109/TIE.2020.2970671
    [120]
    W. Chen, S. K. Zeng, G. Z. Zhang, T. N. Shi, and C. L. Xia, “A modified double vectors model predictive torque control of permanent magnet synchronous motor,” IEEE Trans. Power Electron., vol. 34, no. 11, pp. 11419–11428, Nov. 2019. doi: 10.1109/TPEL.2019.2898901
    [121]
    X. G. Zhang and B. S. Hou, “Double vectors model predictive torque control without weighting factor based on voltage tracking error,” IEEE Trans. Power Electron., vol. 33, no. 3, pp. 2368–2380, Mar. 2018. doi: 10.1109/TPEL.2017.2691776
    [122]
    Y. Xu, X. H. Ding, J. B. Wang, and C. Wang, “Robust three-vector-based low-complexity model predictive current control with supertwisting-algorithm-based second-order sliding-mode observer for permanent magnet synchronous motor,” IET Power Electron., vol. 12, no. 11, pp. 2895–2903, Sept. 2019. doi: 10.1049/iet-pel.2018.5750
    [123]
    L. Chen, H. Xu, X. D. Sun, and Y. F. Cai, “Three-vector-based model predictive torque control for a permanent magnet synchronous motor of EVs,” IEEE Trans. Transp. Electrific., vol. 7, no. 3, pp. 1454–1465, Sept. 2021. doi: 10.1109/TTE.2021.3053256
    [124]
    Y. Xu, X. H. Ding, J. B. Wang, and Y. Y. Li, “Three-vector-based low-complexity model predictive current control with reduced steady-state current error for permanent magnet synchronous motor,” IET Electr. Power Appl., vol. 14, no. 2, pp. 305–315, Feb. 2020. doi: 10.1049/iet-epa.2019.0108
    [125]
    S. W. Kang, J. H. Soh, and R. Y. Kim, “Symmetrical three-vector-based model predictive control with deadbeat solution for IPMSM in rotating reference frame,” IEEE Trans. Ind. Electron., vol. 67, no. 1, pp. 159–168, Jan. 2020. doi: 10.1109/TIE.2018.2890490
    [126]
    Cortes, J. Rodriguez, C. Silva, and A. Flores, “Delay compensation in model predictive current control of a three-phase inverter,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 1323–1325, Feb. 2012. doi: 10.1109/TIE.2011.2157284
    [127]
    Y. Yang, H. Q. Wen, and D. P. Li, “A fast and fixed switching frequency model predictive control with delay compensation for three-phase inverters,” IEEE Access, vol. 5, pp. 17904–17913, Sept. 2017.
    [128]
    T. Jin, X. Y. Shen, T. X. Su, and R. C. C. Flesch, “Model predictive voltage control based on finite control set with computation time delay compensation for PV systems,” IEEE Trans. Energy Convers., vol. 34, no. 1, pp. 330–338, Mar. 2019. doi: 10.1109/TEC.2018.2876619
    [129]
    X. D. Sun, J. H. Cao, G. Lei, Y. G. Guo, and J. G. Zhu, “A robust deadbeat predictive controller with delay compensation based on composite sliding mode observer for PMSMs,” IEEE Trans. Power Electron., vol. 36, no. 9, pp. 10742–10752, Sept. 2021. doi: 10.1109/TPEL.2021.3063226
    [130]
    Y. X. Luo and C. H. Liu, “Model predictive control for a six-phase PMSM motor with a reduced-dimension cost function,” IEEE Trans. Ind. Electron., vol. 67, no. 2, pp. 969–979, Feb. 2020. doi: 10.1109/TIE.2019.2901636
    [131]
    Y. F. Han, C. Gong, L. M. Yan, H. Q. Wen, Y. G. Wang, and K. Shen, “Multiobjective finite control set model predictive control using novel delay compensation technique for PMSM,” IEEE Trans. Power Electron., vol. 35, no. 10, pp. 11193–11204, Oct. 2020. doi: 10.1109/TPEL.2020.2979122
    [132]
    F. X. Wang, J. X. Wang, R. M. Kennel, and J. Rodríguez, “Fast speed control of AC machines without the proportional-integral controller: Using an extended high-gain state observer,” IEEE Trans. Power Electron., vol. 34, no. 9, pp. 9006–9015, Sept. 2019. doi: 10.1109/TPEL.2018.2889862
    [133]
    F. X. Wang, H. T. Xie, Q. Chen, S. A. Davari, J. Rodríguez, and R. Kennel, “Parallel predictive torque control for induction machines without weighting factors,” IEEE Trans. Power Electron., vol. 35, no. 2, pp. 1779–1788, Feb. 2020. doi: 10.1109/TPEL.2019.2922312
    [134]
    P. Cortes, S. Kouro, B. La Rocca, R. Vargas, J. Rodriguez, J. I. Leon, S. Vazquez, and L. G. Franquelo, “Guidelines for weighting factors design in model predictive control of power converters and drives,” in Proc. IEEE Int. Conf. Industrial Technology, Churchill, Australia, 2009, pp. 1–7.
    [135]
    R. U. Guazzelli, W. C. De Andrade Pereira, C. M. R. De Oliveira, A. G. De Castro, and M. L. De Aguiar, “Weighting factors optimization of predictive torque control of induction motor by multiobjective genetic algorithm,” IEEE Trans. Power Electron., vol. 34, no. 7, pp. 6628–6638, Jul. 2019. doi: 10.1109/TPEL.2018.2834304
    [136]
    M. K. Wu, X. D. Sun, J. G. Zhu, G. Lei, and Y. G. Guo, “Improved model predictive torque control for PMSM drives based on duty cycle optimization,” IEEE Trans. Magn., vol. 57, no. 2, pp. 1–5, Feb. 2021.
    [137]
    Y. X. Luo and C. H. Liu, “Elimination of harmonic currents using a reference voltage vector based-model predictive control for a six-phase PMSM motor,” IEEE Trans. Power Electron., vol. 34, no. 7, pp. 6960–6972, Jul. 2019. doi: 10.1109/TPEL.2018.2874893
    [138]
    X. G. Zhang and Y. K. He, “Direct voltage-selection based model predictive direct speed control for PMSM drives without weighting factor,” IEEE Trans. Power Electron., vol. 34, no. 8, pp. 7838–7851, Aug. 2019. doi: 10.1109/TPEL.2018.2880906
    [139]
    G. Z. Zhang, C. Chen, X. Gu, Z. Q. Wang, and X. M. Li, “An improved model predictive torque control for a two-level inverter fed interior permanent magnet synchronous motor,” Electronics, vol. 8, no. 7, p. 769, Jul. 2019. doi: 10.3390/electronics8070769
    [140]
    D. Sun, J. Su, C. Sun, and H. Nian, “A simplified MPFC with capacitor voltage offset suppression for the four-switch three-phase inverter-fed PMSM drive,” IEEE Trans. Ind. Electron., vol. 66, no. 10, pp. 7633–7642, Oct. 2019. doi: 10.1109/TIE.2018.2880699
    [141]
    X. S. Wu, W. S. Song, and C. Xue, “Low-complexity model predictive torque control method without weighting factor for five-phase PMSM based on hysteresis comparators,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 6, no. 4, pp. 1650–1661, Dec. 2018. doi: 10.1109/JESTPE.2018.2849320
    [142]
    T. Geyer and D. E. Quevedo, “Multistep finite control set model predictive control for power electronics,” IEEE Trans. Power Electron., vol. 29, no. 12, pp. 6836–6846, Dec. 2014. doi: 10.1109/TPEL.2014.2306939
    [143]
    T. Geyer and D. E. Quevedo, “Performance of multistep finite control set model predictive control for power electronics,” IEEE Trans. Power Electron., vol. 30, no. 3, pp. 1633–1644, Mar. 2015. doi: 10.1109/TPEL.2014.2316173
    [144]
    Karamanakos, T. Geyer, and R. Aguilera, “Long-horizon direct model predictive control: Modified sphere decoding for transient operation,” IEEE Trans. Ind. Appl., vol. 54, no. 6, pp. 6060–6070, Nov.–Dec. 2018. doi: 10.1109/TIA.2018.2850336
    [145]
    R. Baidya, R. P. Aguilera, P. Acuña, T. Geyer, R. A. Delgado, D. E. Quevedo, and H. Du Toit Mouton, “Enabling multistep model predictive control for transient operation of power converters,” IEEE Open J. Ind. Electron. Soc., vol. 1, pp. 284–297, Oct. 2020.
    [146]
    J. F. Hu, J. G. Zhu, G. Lei, G. Platt, and D. G. Dorrell, “Multi-objective model-predictive control for high-power converters,” IEEE Trans. Energy Convers., vol. 28, no. 3, pp. 652–663, Sept. 2013. doi: 10.1109/TEC.2013.2270557
    [147]
    Y. J. Yu and X. Z. Wang, “Multi-step predictive current control for NPC grid-connected inverter,” IEEE Access, vol. 7, pp. 157756–157765, Oct. 2019.
    [148]
    W. Chen, X. H. Zhang, X. Gu, Y. Yan, and T. N. Shi, “Band-based multi-step predictive torque control strategy for PMSM drives,” IEEE Access, vol. 7, pp. 171411–171422, Nov. 2019.
    [149]
    Y. L. Wang, W. Xie, X. C. Wang, W. B. Yang, M. F. Dou, S. J. Song, and D. Gerling, “Fast response model predictive torque and flux control with low calculation effort for PMSMs,” IEEE Trans. Ind. Inform., vol. 15, no. 10, pp. 5531–5540, Oct. 2019. doi: 10.1109/TII.2019.2900116
    [150]
    T. Dorfling, H. Du Toit Mouton, T. Geyer, and Karamanakos, “Long-horizon finite-control-set model predictive control with nonrecursive sphere decoding on an FPGA,” IEEE Trans. Power Electron., vol. 35, no. 7, pp. 7520–7531, Jul. 2020. doi: 10.1109/TPEL.2019.2956213
    [151]
    C. A. Agustin, J. T. Yu, C. K. Lin, J. Jai, and Y. S. Lai, “Triple-voltage-vector model-free predictive current control for four-switch three-phase inverter-fed SPMSM based on discrete-space-vector modulation,” IEEE Access, vol. 9, pp. 60352–60363, Apr. 2021.
    [152]
    M. Yang, X. Y. Lang, J. Long, and D. G. Xu, “Flux Immunity robust predictive current control with incremental model and extended state observer for PMSM drive,” IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9267–9279, Dec. 2017. doi: 10.1109/TPEL.2017.2654540
    [153]
    M. Khalilzadeh and S. Vaez-Zadeh, “A robust predictive torque and flux control for IPM motor drives without a cost function,” IEEE Trans. Power Electron., vol. 36, no. 7, pp. 8067–8075, Jul. 2021. doi: 10.1109/TPEL.2020.3041811
    [154]
    F. X. Wang, K. K. Zuo, P. Tao, and J. Rodríguez, “High performance model predictive control for PMSM by using stator current mathematical model self-regulation technique,” IEEE Trans. Power Electron., vol. 35, no. 12, pp. 13652–13662, Dec. 2020. doi: 10.1109/TPEL.2020.2994948
    [155]
    K. S. Alam, M. Akter, D. Xiao, D. M. Zhang, and M. F. Rahman, “Asymptotically stable predictive control of grid-connected converter based on discrete space vector modulation,” IEEE Trans. Ind. Inf., vol. 15, no. 5, pp. 2775–2785, May 2019. doi: 10.1109/TII.2018.2876274
    [156]
    R. Aguilera and D. E. Quevedo, “Predictive control of power converters: Designs with guaranteed performance,” IEEE Trans. Ind. Inf., vol. 11, no. 1, pp. 53–63, Feb. 2015. doi: 10.1109/TII.2014.2363933
    [157]
    H. T. Nguyen and J. W. Jung, “Finite control set model predictive control to guarantee stability and robustness for surface-mounted PM synchronous motors,” IEEE Trans. Ind. Electron., vol. 65, no. 11, pp. 8510–8519, Nov. 2018.
    [158]
    A. Katkout, T. Nasser, and A. Essadki, “Novel predictive control for the IPMSM fed by the 3L-SNPC inverter for EVAs: Modified Lyapunov function, computational efficiency, and delay compensation,” Math. Probl. Eng., vol. 2020, p. 2515107, Aug. 2020.
    [159]
    G. Q. Bao, W. G. Qi, and T. He, “Direct torque control of PMSM with modified finite set model predictive control,” Energies, vol. 13, no. 1, pp. 234, Jan. 2020.
    [160]
    X. D. Sun, T. Li, X. Tian, and J. G. Zhu, “Fault-tolerant operation of a six-phase permanent magnet synchronous hub motor based on model predictive current control with virtual voltage vectors,” IEEE Trans. Energy Convers., vol. 37, no. 1, pp. 337–346, Mar. 2022. doi: 10.1109/TEC.2021.3109869
    [161]
    X. D. Sun, T. Li, Z. Zhu, G. Lei, Y. G. Guo, and J. G. Zhu, “Speed sensorless model predictive current control based on finite position set for PMSHM drives,” IEEE Trans. Transp. Electrific., vol. 7, no. 4, pp. 2743–2752, Dec. 2021. doi: 10.1109/TTE.2021.3081436
    [162]
    T. Yang, T. Kawaguchi, S. Hashimoto, and W. Jiang, “Switching sequence model predictive direct torque control of IPMSMs for EVs in switch open-circuit fault-tolerant mode,” Energies, vol. 13, no. 21, p. 5593, Oct. 2020. doi: 10.3390/en13215593
    [163]
    Y. X. Luo and C. H. Liu, “Pre- and post-fault tolerant operation of a six-phase PMSM motor using FCS-MPC without controller reconfiguration,” IEEE Trans. Veh. Technol., vol. 68, no. 1, pp. 254–263, Jan. 2019. doi: 10.1109/TVT.2018.2883665
    [164]
    G. Forstner, A. Kugi, and W. Kemmetmüller, “Fault-tolerant torque control of a three-phase permanent magnet synchronous motor with inter-turn winding short circuit,” Control Eng. Pract., vol. 113, p. 104846, Aug. 2021. doi: 10.1016/j.conengprac.2021.104846
    [165]
    M. Abdelrahem, C. M. Hackl, J. Rodríguez, and R. Kennel, “Model reference adaptive system with finite-set for encoderless control of PMSGS in micro-grid systems,” Energies, vol. 13, no. 18, p. 4844, Sept. 2020. doi: 10.3390/en13184844
    [166]
    L. Sun, X. X. Li, and L. M. Chen, “Motor speed control with convex optimization-based position estimation in the current loop,” IEEE Trans. Power Electron., vol. 36, no. 9, pp. 10906–10919, Sept. 2021. doi: 10.1109/TPEL.2021.3068309
    [167]
    F. Liu, H. T. Li, L. Liu, R. M. Zou, and K. Z. Liu, “A control method for IPMSM based on active disturbance rejection control and model predictive control,” Mathematics, vol. 9, no. 7, p. 760, Apr. 2021. doi: 10.3390/math9070760
    [168]
    H. J. Shi and X. C. Nie, “Composite control for disturbed direct-driven surface-mounted permanent magnet synchronous generator with model prediction strategy,” Meas. Control, vol. 54, no. 5–6, pp. 1015–1025, Apr. 2021. doi: 10.1177/00202940211010829
    [169]
    Z. Y. Sun, S. Xu, G. Z. Ren, C. X. Yao, and G. T. Ma, “A cascaded band based model predictive current control for PMSM drives,” IEEE Trans. Ind. Electron., 2022, DOI: 10.1109/TIE.2022.3176312.
    [170]
    J. Yoo and K. H. Johansson, “Event-triggered model predictive control with a statistical learning,” IEEE Trans. Syst. Man,Cybern. Syst., vol. 51, no. 4, pp. 2571–2581, Apr. 2021. doi: 10.1109/TSMC.2019.2916626
    [171]
    D. W. Shi, J. Xue, L. X. Zhao, J. Z. Wang, and Y. Huang, “Event-triggered active disturbance rejection control of DC torque motors,” IEEE/ASME Trans. Mechatron., vol. 22, no. 5, pp. 2277–2287, Oct. 2017. doi: 10.1109/TMECH.2017.2748887

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(22)  / Tables(7)

    Article Metrics

    Article views (189) PDF downloads(63) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return