A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 3 Issue 4
Oct.  2016

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Changchun Hua, Tong Zhang, Yafeng Li and Xinping Guan, "Robust Output Feedback Control for Fractional Order Nonlinear Systems with Time-varying Delays," IEEE/CAA J. Autom. Sinica, vol. 3, no. 4, pp. 477-482, Oct. 2016.
Citation: Changchun Hua, Tong Zhang, Yafeng Li and Xinping Guan, "Robust Output Feedback Control for Fractional Order Nonlinear Systems with Time-varying Delays," IEEE/CAA J. Autom. Sinica, vol. 3, no. 4, pp. 477-482, Oct. 2016.

Robust Output Feedback Control for Fractional Order Nonlinear Systems with Time-varying Delays


National Natural Science Foundation of China 61290322, 61273222, 61322303, 61473248, 61403335

Hebei Province Applied Basis Research Project 15967629D

Top Talents Project of Hebei Province and Yanshan University Project 13LGA020

More Information
  • Robust controller design problem is investigated for a class of fractional order nonlinear systems with time varying delays. Firstly, a reduced-order observer is designed. Then, an output feedback controller is designed. Both the designed observer and controller are independent of time delays. By choosing appropriate Lyapunov functions, we prove the designed controller can render the fractional order system asymptotically stable. A simulation example is given to verify the effectiveness of the proposed approach.


  • loading
  • [1]
    Podlubny I. Fractional Differential Equations:An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications. San Diego:Academic Press, 1999.
    Pan I, Das S. Intelligent Fractional Order Systems and Control. Berlin Heidelberg:Springer, 2013.
    Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations, Volume 204(North-Holland Mathematics Studies). New York:Elsevier Science Inc., 2006.
    Lakshmikantham V, Leela S, Vasundhara Devi J. Theory of Fractional Dynamic Systems. Cambridge, UK:Cambridge Scientific Publishers, 2009.
    Diethelm K. The Analysis of Fractional Differential Equations. Berlin:Springer, 2010.
    Lakshmikantham V, Vatsala A S. Basic theory of fractional differential equations. Nonlinear Analysis:Theory, Methods and Applications, 2008, 69(8):2677-2682 doi: 10.1016/j.na.2007.08.042
    Matignon D. Stability results for fractional differential equations with applications to control processing. Computational Engineering in Systems Applications, 1996, 2:963-968 http://cn.bing.com/academic/profile?id=56786142&encoded=0&v=paper_preview&mkt=zh-cn
    Lu J G, Chen Y Q. Robust stability and stabilization of fractional-order interval systems with the fractional order α:the 0 << α << 1 case. IEEE Transactions on Automatic Control, 2010, 55(1):152-158 doi: 10.1109/TAC.2009.2033738
    Lu J G, Chen G R. Robust stability and stabilization of fractional-order interval systems:an LMI approach. IEEE Transactions on Automatic Control, 2009, 54(6):1294-1299 doi: 10.1109/TAC.2009.2013056
    Zhang X F, Liu L, Feng G, Wang Y Z. Asymptotical stabilization of fractional-order linear systems in triangular form. Automatica, 2013, 49(11):3315-3321 doi: 10.1016/j.automatica.2013.08.002
    Lim Y H, Oh K K, Ahn H S. Stability and stabilization of fractionalorder linear systems subject to input saturation. IEEE Transactions on Automatic Control, 2013, 58(4):1062-1067 doi: 10.1109/TAC.2012.2218064
    Aguila-Camacho N, Duarte-Mermoud M A, Gallegos J A. Lyapunov functions for fractional order systems. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(9):2951-2957 doi: 10.1016/j.cnsns.2014.01.022
    Wen X J, Wu Z M, Lu J G. Stability analysis of a class of nonlinear fractional-order systems. IEEE Transactions on Circuits and Systems Ⅱ:Express Briefs, 2008, 55(11):1178-1182 doi: 10.1109/TCSII.2008.2002571
    Delavari H, Baleanu D, Sadati J. Stability analysis of Caputo fractionalorder nonlinear systems revisited. Nonlinear Dynamics, 2012, 67(4):2433-2439 doi: 10.1007/s11071-011-0157-5
    Li Y, Chen Y Q, Podlubny I. Stability of fractional-order nonlinear dynamic systems:Lyapunov direct method and generalized MittagLeffler stability. Computers and Mathematics with Applications, 2010, 59(5):1810-1821 doi: 10.1016/j.camwa.2009.08.019
    Hua C C, Guan X P, Shi P. Robust backstepping control for a class of time delayed systems. IEEE Transactions on Automatic Control, 2005, 50(6):894-899 doi: 10.1109/TAC.2005.849255
    Bonnet C, Partington J R. Coprime factorizations and stability of fractional differential systems. Systems and Control Letters, 2000, 41(3):167-174 doi: 10.1016/S0167-6911(00)00050-5
    Deng W H, Li C P, Lv J H. Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dynamics, 2007, 48(4):409-416 doi: 10.1007/s11071-006-9094-0
    Kheirizad I, Tavazoei M S, Jalali A A. Stability criteria for a class of fractional order systems. Nonlinear Dynamics, 2010, 61(1-2):153-161 doi: 10.1007/s11071-009-9638-1
    Zhang F R, Li C P. Stability analysis of fractional differential systems with order lying in (1, 2). Advances in Difference Equations, 2011, 2011:Article ID 213485 http://cn.bing.com/academic/profile?id=2058317840&encoded=0&v=paper_preview&mkt=zh-cn
    Wen Y H, Zhou X F, Zhang Z X, Liu S. Lyapunov method for nonlinear fractional differential systems with delay. Nonlinear Dynamics, 2015, 82(1-2):1015-1025 doi: 10.1007/s11071-015-2214-y
    Yu W, Li T Z. Stability analysis of fractional-order nonlinear systems with delay. Mathematical Problems in Engineering, 2014, 2014(4):Article ID 301235 http://cn.bing.com/academic/profile?id=2033083367&encoded=0&v=paper_preview&mkt=zh-cn
    Wei Y H, Chen Y Q, Liang S, Wang Y. A novel algorithm on adaptive backstepping control of fractional order systems. Neurocomputing, 2015, 165:395-402 doi: 10.1016/j.neucom.2015.03.029
    Ding D S, Qi D L, Meng Y, Xu L. Adaptive Mittag-Leffler stabilization of commensurate fractional-order nonlinear systems. In:Proceedings of the 53rd IEEE Conference on Decision and Control (CDC). Los Angeles, CA:IEEE, 2014. 6920-6926
    Syta A, Litak G, Lenci S, Scheffler M. Chaotic vibrations of the duffing system with fractional damping. Chaos:An Interdisciplinary Journal of Nonlinear Science, 2014, 24(1):013107 doi: 10.1063/1.4861942


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (1137) PDF downloads(23) Cited by()


    DownLoad:  Full-Size Img  PowerPoint