A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 3 Issue 4
Oct.  2016

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Hua Chen and YangQuan Chen, "Fractional-order Generalized Principle of Self-support (FOGPSS) in Control System Design," IEEE/CAA J. Autom. Sinica, vol. 3, no. 4, pp. 430-441, Oct. 2016.
Citation: Hua Chen and YangQuan Chen, "Fractional-order Generalized Principle of Self-support (FOGPSS) in Control System Design," IEEE/CAA J. Autom. Sinica, vol. 3, no. 4, pp. 430-441, Oct. 2016.

Fractional-order Generalized Principle of Self-support (FOGPSS) in Control System Design


This work was supported by the National Natural Science Foundation of China 61304004, 61503205

the Foundation of China Scholarship Council 201406 715056

the Foundation of Changzhou Key Laboratory of Special Robot and Intelligent Technology CZSR2014005

and the Changzhou Science and Technology Program CJ20160013

More Information
  • This paper reviews research that studies the principle of self-support (PSS) in some control systems and proposes a fractional-order generalized PSS framework for the first time. The existing PSS approach focuses on practical tracking problem of integer-order systems including robotic dynamics, high precision linear motor system, multi-axis high precision positioning system with unmeasurable variables, imprecise sensor information, uncertain parameters and external disturbances. More generally, by formulating the fractional PSS concept as a new generalized framework, we will focus on the possible fields of the fractional-order control problems such as practical tracking, -tracking, etc. of robot systems, multiple mobile agents, discrete dynamical systems, time delay systems and other uncertain nonlinear systems. Finally, the practical tracking of a first-order uncertain model of automobile is considered as a simple example to demonstrate the efficiency of the fractional-order generalized principle of self-support (FOGPSS) control strategy.


  • loading
  • [1]
    Novaković Z R. The Principle of Self-Support in Control Systems. Amsterdam, New York:Elsevier Science Ltd., 1992.
    Alley R B. The Two-Mile Time Machine:Ice Cores, Abrupt Climate Change, and Our Future. Princeton:Princeton University Press, 2014.
    Novaković Z R. The principle of self-support in robot control synthesis. IEEE Transactions on Systems, Man, and Cybernetics, 1991, 21(1):206-220 doi: 10.1109/21.101150
    Tan K K, Dou H F, Chen Y Q, Lee T H. High precision linear motor control via relay-tuning and iterative learning based on zero-phase filtering. IEEE Transactions on Control Systems Technology, 2001, 9(2):244-253 doi: 10.1109/87.911376
    Novaković Z R. Robust tracking control for robots with bounded input. Journal of Dynamic Systems, Measurement, and Control, 1992, 114(2):315-319 doi: 10.1115/1.2896530
    Novaković Z R. The principle of self-support:a new approach to kinematic control of robots. In:Proceedings of the 5th International Conference on Advanced Robotics, 1991. Robots in Unstructured Environments. Pisa, Italy:IEEE, 1991. 1444-1447
    Ulu N G, Ulu E, Cakmakci M. Learning based cross-coupled control for multi-axis high precision positioning systems. In:Proceedings of the 5th ASME Annual Dynamic Systems and Control Conference Joint with the 11th JSME Motion and Vibration Conference. Florida, USA:ASME, 2012. 535-541
    Özdemir N, Avci D. Optimal control of a linear time-invariant space-time fractional diffusion process. Journal of Vibration and Control, 2014, 20(3):370-380 doi: 10.1177/1077546312464678
    Zhao X, Yang H T, He Y Q. Identification of constitutive parameters for fractional viscoelasticity. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(1):311-322 doi: 10.1016/j.cnsns.2013.05.019
    Ge Z M, Jhuang W R. Chaos, control and synchronization of a fractional order rotational mechanical system with a centrifugal governor. Chaos, Solitons and Fractals, 2007, 33(1):270-289 doi: 10.1016/j.chaos.2005.12.040
    Chen H, Chen W, Zhang B W, Cao H T. Robust synchronization of incommensurate fractional-order chaotic systems via second-order sliding mode technique. Journal of Applied Mathematics, 2013, 2013:Article ID 321253
    Jesus I S, Tenreiro Machado J A. Development of fractional order capacitors based on electrolyte processes. Nonlinear Dynamics, 2009, 56(1-2):45-55 doi: 10.1007/s11071-008-9377-8
    Müller S, K ästner M, Brummund J, Ulbricht V. A nonlinear fractional viscoelastic material model for polymers. Computational Materials Science, 2011, 50(10):2938-2949 doi: 10.1016/j.commatsci.2011.05.011
    Rivero M, Trujillo J J, Vázquez L, Pilar Velasco M. Fractional dynamics of populations. Applied Mathematics and Computation, 2011, 218(3):1089-1095 doi: 10.1016/j.amc.2011.03.017
    Chen Y Q, Moore K L. Discretization schemes for fractional-order differentiators and integrators. IEEE Transactions on Circuits and Systems-I:Fundamental Theory and Applications, 2002, 49(3):363-367 doi: 10.1109/81.989172
    Corradini M L, Giambó R, Pettinari S. On the adoption of a fractional-order sliding surface for the robust control of integer-order LTI plants. Automatica, 2015, 51:364-371 doi: 10.1016/j.automatica.2014.10.075
    Pisano A, Rapaić M, Jeličić Z, Usai E. Nonlinear fractional PI control of a class of fractional-order systems. In:Proceedings of the 2012 IFAC Conference on Advances in PID Control. Brescia, Italy, 2012. 637-642
    Monje C A, Vinagre B M, Feliu V, Chen Y Q. Tuning and autotuning of fractional order controllers for industry applications. Control Engineering Practice, 2008, 16(7):798-812 doi: 10.1016/j.conengprac.2007.08.006
    Monje C A, Chen Y Q, Vinagre B M, Xue D, Feliu-Batlle V. FractionalOrder Systems and Controls. London:Springer, 2010.
    Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations. Amsterdam, The Netherlands:Elsevier, 2006.
    Podlubny I. Fractional Differential Equations. New York:Academic Press, 1999.
    Li C P, Deng W H. Remarks on fractional derivatives. Applied Mathematics and Computation, 2007, 187(2):777-784 doi: 10.1016/j.amc.2006.08.163
    Samko S G, Kilbas A A, Marichev O I. Fractional Integrals and Derivatives:Theory and Applications. Switzerland:Gordon and Breach Science Publishers, 1993.
    Li C P, Zeng F H. Numerical Methods for Fractional Calculus. Boca Raton, FL:Chapman and Hall/CRC, 2015.
    Miller K S, Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations. New York:Wiley, 1993.
    Oldham K B, Spanier J. The Fractional Calculus. New York:Academic Press, 1974.
    Li C P, Dao X H, Guo P. Fractional derivatives in complex planes. Nonlinear Analysis:Theory, Methods, and Applications, 2009, 71(5-6):1857-1869 doi: 10.1016/j.na.2009.01.021
    Li C P, Qian D L, Chen Y Q. On Riemann-Liouville and Caputo derivatives. Discrete Dynamics in Nature and Society, 2011, 2011:Article ID 562494
    Li C P, Zhao Z G. Introduction to fractional integrability and differentiability. The European Physical Journal Special Topics, 2011, 193(1):5-26 doi: 10.1140/epjst/e2011-01378-2
    Li C P, Zhang F R, Kurths J, Zeng F H. Equivalent system for a multiple-rational-order fractional differential system. Philosophical Transactions of the Royal Society A:Mathematical, Physical, and Engineering Sciences, 2013, 371(1990):20120156 doi: 10.1098/rsta.2012.0156
    Li Y, Chen Y Q, Podlubny I. Stability of fractional-order nonlinear dynamic systems:Lyapunov direct method and generalized MittagLeffler stability. Computers and Mathematics with Applications, 2010, 59(5):1810-1821 doi: 10.1016/j.camwa.2009.08.019
    Li Y, Chen Y Q, Podlubny I. Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica, 2009, 45(8):1965-1969 doi: 10.1016/j.automatica.2009.04.003
    Ahn H S, Chen Y Q. Necessary and sufficient stability condition of fractional-order interval linear systems. Automatica, 2008, 44(11):2985-2988 doi: 10.1016/j.automatica.2008.07.003
    Ahn H S, Chen Y Q, Podlubny I. Robust stability test of a class of linear time-invariant interval fractional-order system using Lyapunov inequality. Applied Mathematics and Computation, 2007, 187(1):27-34 doi: 10.1016/j.amc.2006.08.099
    Lu J G, Chen Y Q. Robust stability and stabilization of fractional-order interval systems with the fractional order α:the 0 << α << 1 case. IEEE Transactions on Automatic Control, 2010, 55(1):152-158 doi: 10.1109/TAC.2009.2033738
    Chen Y Q, Moore K L. Analytical stability bound for a class of delayed fractional-order dynamic systems. Nonlinear Dynamics, 2002, 29(1-4):191-200 http://cn.bing.com/academic/profile?id=213140877&encoded=0&v=paper_preview&mkt=zh-cn
    Aguila-Camacho N, Duarte-Mermoud M A, Gallegos J A. Lyapunov functions for fractional order systems. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(9):2951-2957 doi: 10.1016/j.cnsns.2014.01.022
    Podlubny I. Fractional Differential Equations:an Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications. New York:Academic Press, 1999.
    Diethelm K, Ford N J, Freed A D. A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dynamics, 2002, 29(1-4):3-22 http://cn.bing.com/academic/profile?id=1509146820&encoded=0&v=paper_preview&mkt=zh-cn
    Ilchmann A, Ryan E P. Universal λ-tracking for nonlinearly-perturbed systems in the presence of noise. Automatica, 1994, 30(2):337-346 doi: 10.1016/0005-1098(94)90035-3
    Allgöwer F, Ilchmann A. Multivariable adaptive λ-tracking for nonlinear chemical processes. In:Proceedings of the 3rd European Control Conference. Rome, Italy, 1995. 1645-1651
    Allgöwer F, Ashman J, Ilchmann A. High-gain λ-tracking for nonlinear systems. Automatica, 1997, 33(5):881-888 doi: 10.1016/S0005-1098(96)00226-9
    Ilchmann A, Logemann H. Adaptive λ-tracking for a class of infinitedimensional systems. Systems and Control Letters, 1998, 34(1-2):11-21 doi: 10.1016/S0167-6911(97)00133-3
    Ilchmann A, Townley S. Adaptive high-gain λ-tracking with variable sampling rate. Systems and Control Letters, 1999, 36(4):285-293 doi: 10.1016/S0167-6911(98)00101-7
    Ilchmann A, Thuto M, Townley S. Input constrained adaptive tracking with applications to exothermic chemical reaction models. SIAM Journal on Control and Optimization, 2004, 43(1):154-173 doi: 10.1137/S0363012901391081
    Ilchmann A, Thuto M, Townley S. λ-tracking for exothermic chemical reactions with saturating inputs. In:Proceedings of the 2001 European Control Conference (ECC). Porto, Portugal:IEEE, 2001. 1928-1933
    Ilchmann A, Trenn S. Input constrained funnel control with applications to chemical reactor models. Systems and Control Letters, 2004, 53(5):361-375 doi: 10.1016/j.sysconle.2004.05.014
    Ilchmann A, Townley S, Thuto M. Adaptive sampled-data tracking for input-constrained exothermic chemical reaction models. Systems and Control Letters, 2005, 54(12):1149-1161 doi: 10.1016/j.sysconle.2005.04.004
    Shinskey F G. Process-Control Systems. New York:McGraw-Hill Book Company, 1967.
    Zhong Q C. Robust Control of Time-Delay Systems. London:Springer, 2006.
    Niculescu S L. Delay Effects on Stability:A Robust Control Approach. London:Springer, 2001.
    Yi Y, Guo L, Wang H. Adaptive statistic tracking control based on twostep neural networks with time delays. IEEE Transactions on Neural Networks, 2009, 20(3):420-429 doi: 10.1109/TNN.2008.2008329
    Fridman E. A refined input delay approach to sampled-data control. Automatica, 2010, 46(2):421-427 doi: 10.1016/j.automatica.2009.11.017
    Wang M, Chen B, Liu X P, Shi P. Adaptive fuzzy tracking control for a class of perturbed strict-feedback nonlinear time-delay systems. Fuzzy Sets and Systems, 2008, 159(8):949-967 doi: 10.1016/j.fss.2007.12.022
    Wu H S. Adaptive robust tracking and model following of uncertain dynamical systems with multiple time delays. IEEE Transactions on Automatic Control, 2004, 49(4):611-616 doi: 10.1109/TAC.2004.825634
    Wang M, Ge S S, Hong K S. Approximation-based adaptive tracking control of pure-feedback nonlinear systems with multiple unknown time-varying delays. IEEE Transactions on Neural Networks, 2010, 21(11):1804-1816 doi: 10.1109/TNN.2010.2073719
    Tseng C S. Model reference output feedback fuzzy tracking control design for nonlinear discrete-time systems with time-delay. IEEE Transactions on Fuzzy Systems, 2006, 14(1):58-70 doi: 10.1109/TFUZZ.2005.861609
    Zhang H G, Song R Z, Wei Q L, Zhang T Y. Optimal tracking control for a class of nonlinear discrete-time systems with time delays based on heuristic dynamic programming. IEEE Transactions on Neural Networks, 2011, 22(12):1851-1862 doi: 10.1109/TNN.2011.2172628
    Li Q K, Zhao J, Dimirovski G M, Liu X J. Tracking control for switched linear systems with time-delay:a state-dependent switching method. Asian Journal of Control, 2009, 11(5):517-526 doi: 10.1002/asjc.v11:5
    Cho G R, Chang P H, Park S H, Jin M L. Robust tracking under nonlinear friction using time-delay control with internal model. IEEE Transactions on Control Systems Technology, 2009, 17(6):1406-1414 doi: 10.1109/TCST.2008.2007650
    Wang L X. Adaptive Fuzzy Systems and Control:Design and Stability Analysis. Englewood Cliffs, NJ:Prentice-Hall, 1994.
    Boulkroune A, Tadjine M, M'Saad M, Farza M. How to design a fuzzy adaptive controller based on observers for uncertain affine nonlinear systems. Fuzzy Sets and Systems, 2008, 159(8):926-948 doi: 10.1016/j.fss.2007.08.015
    Chen H, Wang C L, Yang L, Zhang D K. Semiglobal stabilization for nonholonomic mobile robots based on dynamic feedback with inputs saturation. Journal of Dynamic Systems, Measurement, and Control, 2012, 134(4):041006 doi: 10.1115/1.4006076
    Chen H. Robust stabilization for a class of dynamic feedback uncertain nonholonomic mobile robots with input saturation. International Journal of Control, Automation, and Systems, 2014, 12(6):1216-1224 doi: 10.1007/s12555-013-0492-z
    Chen H, Wang C L, Zhang B W, Zhang D K. Saturated tracking control for nonholonomic mobile robots with dynamic feedback. Transactions of the Institute of Measurement and Control, 2013, 35(2):105-116 doi: 10.1177/0142331211431719
    Lin Z L, Saberi A. Semi-global exponential stabilization of linear discrete-time systems subject to input saturation via linear feedbacks. Systems and Control Letters, 1995, 24(2):125-132 doi: 10.1016/0167-6911(94)00020-V
    Boškovic J D, Li S M, Mehra R K. Robust adaptive variable structure control of spacecraft under control input saturation. Journal of Guidance, Control, and Dynamics, 2001, 24(1):14-22 doi: 10.2514/2.4704
    Chen H, Wang C L, Liang Z Y, Zhang D K, Zhang H J. Robust practical stabilization of nonholonomic mobile robots based on visual servoing feedback with inputs saturation. Asian Journal of Control, 2014, 16(3):692-702 doi: 10.1002/asjc.2014.16.issue-3
    Chen H, Ding S H, Chen X, Wang L H, Zhu C P, Chen W. Global finitetime stabilization for nonholonomic mobile robots based on visual servoing. International Journal of Advanced Robotic Systems, 2014, 11:1-13 http://cn.bing.com/academic/profile?id=1976149141&encoded=0&v=paper_preview&mkt=zh-cn
    Li B J, Chen H, Chen J F. Global finite-time stabilization for a class of nonholonomic chained system with input saturation. Journal of Information and Computational Science, 2014, 11(3):883-890 doi: 10.12733/issn.1548-7741
    Chen Hua, Wang Chao-Li, Yang Fang, Xu Wei-Dong. Finite-time saturated stabilization of nonholonomic mobile robots based on visual servoing. Control Theory and Applications, 2012, 29(6):817-823(in Chinese) http://cn.bing.com/academic/profile?id=2383042891&encoded=0&v=paper_preview&mkt=zh-cn
    Chen H, Chen J F, Lei Y, Chen W X, Wang Y W. Further results of semiglobal saturated stabilization for nonholonomic mobile robots. In:Proceedings of the 26th Chinese Control and Decision Conference (2014 CCDC). Changsha, China:IEEE, 2014. 4545-4550
    Chen H, Zhang J B. Semiglobal saturated practical stabilization for nonholonomic mobile robots with uncertain parameters and angle measurement disturbance. In:Proceedings of the 25th Chinese Control and Decision Conference (CCDC). Guiyang, China:IEEE, 2013. 3731-3736
    Su H S, Chen M Z Q, Wang X F, Lam J. Semiglobal observer-based leader-following consensus with input saturation. IEEE Transactions on Industrial Electronics, 2014, 61(6):2842-2850 doi: 10.1109/TIE.2013.2275976
    Mobayen S. Robust tracking controller for multivariable delayed systems with input saturation via composite nonlinear feedback. Nonlinear Dynamics, 2014, 76(1):827-838 doi: 10.1007/s11071-013-1172-5
    Wang X, Saberi A, Stoorvogel A A. Stabilization of discrete-time linear systems subject to input saturation and multiple unknown constant delays. IEEE Transactions on Automatic Control, 2014, 59(6):1667-1672 doi: 10.1109/TAC.2013.2294615
    Fischer N, Dani A, Sharma N, Dixon W E. Saturated control of an uncertain nonlinear system with input delay. Automatica, 2013, 49(6):1741-1747 doi: 10.1016/j.automatica.2013.02.013
    Lin Z L, Saberi A. Semi-global exponential stabilization of linear systems subject to input saturation via linear feedbacks. Systems and Control Letters, 1993, 21(3):225-239 doi: 10.1016/0167-6911(93)90033-3
    Yang T, Meng Z Y, Dimarogonas D V, Johansson K H. Global consensus for discrete-time multi-agent systems with input saturation constraints. Automatica, 2014, 50(2):499-506 doi: 10.1016/j.automatica.2013.11.008
    Lim Y H, Oh K K, Ahn H S. Stability and stabilization of fractionalorder linear systems subject to input saturation. IEEE Transactions on Automatic Control, 2013, 58(4):1062-1067 doi: 10.1109/TAC.2012.2218064
    Ortega R, Spong M W. Adaptive motion control of rigid robots:a tutorial. Automatica, 1989, 25(6):877-888 doi: 10.1016/0005-1098(89)90054-X
    Nicosia S, Tomei P. Robot control by using only joint position measurements. IEEE Transactions on Automatic Control, 1990, 35(9):1058-1061 doi: 10.1109/9.58537
    Corless M. Control of uncertain nonlinear systems. Journal of Dynamic Systems, Measurement, and Control, 1993, 115(2B):362-372 doi: 10.1115/1.2899076
    Utkin V I. Sliding Modes and Their Application in Variable Structure Systems. Moscow:MIR Publishers, 1978.
    Slotine J J, Li W P. Applied Nonlinear Control. Englewood Cliffs, NJ:Prentice Hall, 1991.
    Zhang F, Dawson D M, de Queiroz M S, Dixon W E. Global adaptive output feedback tracking control of robot manipulators. IEEE Transactions on Automatic Control, 2000, 45(6):1203-1208 doi: 10.1109/9.863607
    Hsu S H, Fu L C. A fully adaptive decentralized control of robot manipulators. Automatica, 2006, 42(10):1761-1767 doi: 10.1016/j.automatica.2006.05.012
    Galicki M. An adaptive regulator of robotic manipulators in the task space. IEEE Transactions on Automatic Control, 2008, 53(4):1058-1062 doi: 10.1109/TAC.2008.921022
    Galicki M. Control of mobile manipulators in a task space. IEEE Transactions on Automatic Control, 2012, 57(2):2962-2967 http://cn.bing.com/academic/profile?id=2069282182&encoded=0&v=paper_preview&mkt=zh-cn
    Galicki M. Finite-time control of robotic manipulators. Automatica, 2015, 51:49-54 doi: 10.1016/j.automatica.2014.10.089
    Ijspeert A J, Nakanishi J, Schaal S. Movement imitation with nonlinear dynamical systems in humanoid robots. In:Proceedings of the 2002 IEEE International Conference on Robotics and Automation. Washington, DC:IEEE, 2002. 1398-1403
    Katić D, Vukobratović M. Survey of intelligent control techniques for humanoid robots. Journal of Intelligent and Robotic Systems, 2003, 37(2):117-141 doi: 10.1023/A:1024172417914
    Furuta T, Tawara T, Okumura Y, Shimizu M, Tomiyama K. Design and construction of a series of compact humanoid robots and development of biped walk control strategies. Robotics and Autonomous Systems, 2001, 37(2-3):81-100 doi: 10.1016/S0921-8890(01)00151-8
    Goswami A, Yun S, Nagarajan U, Lee S H, Yin K K, Kalyanakrishnan S. Direction-changing fall control of humanoid robots:theory and experiments. Autonomous Robots, 2014, 36(3):199-223 doi: 10.1007/s10514-013-9343-2
    Eaton M. Introduction. Evolutionary Humanoid Robotics. Berlin Heidelberg:Springer, 2015. 1-7
    Yuh J. Design and control of autonomous underwater robots:a survey. Autonomous Robots, 2000, 8(1):7-24 http://cn.bing.com/academic/profile?id=1595895163&encoded=0&v=paper_preview&mkt=zh-cn
    Antonelli G. Underwater Robots (Third edition). Switzerland:Springer, 2014.
    Choi S K, Yuh J. Experimental study on a learning control system with bound estimation for underwater robots. Autonomous Robots, 1996, 3(2-3):187-194 doi: 10.1007/BF00141154
    Chu W S, Lee K T, Song S H, Han M W, Lee J Y, Kim H S, Kim M S, Park Y J, Cho K J, Ahn S H. Review of biomimetic underwater robots using smart actuators. International Journal of Precision Engineering and Manufacturing, 2012, 13(7):1281-1292 doi: 10.1007/s12541-012-0171-7
    Krieg M, Mohseni K. Thrust characterization of a bioinspired vortex ring thruster for locomotion of underwater robots. IEEE Journal of Oceanic Engineering, 2008, 33(2):123-132 doi: 10.1109/JOE.2008.920171
    Taylor T. A genetic regulatory network-inspired real-time controller for a group of underwater robots. In:Proceedings of the 8th Conference on Intelligent Autonomous Systems (IAS-8). Amsterdam, 2004. 403-412
    Jaulin L. A nonlinear set membership approach for the localization and map building of underwater robots. IEEE Transactions on Robotics, 2009, 25(1):88-98 doi: 10.1109/TRO.2008.2010358
    Tarn T J, Shoults G A, Yang S P. A dynamic model of an underwater vehicle with a robotic manipulator using Kane's method. Underwater Robots. US:Springer, 1996. 195-209
    Nakamura Y, Mukherjee R. Nonholonomic path planning of space robots via a bidirectional approach. IEEE Transactions on Robotics and Automation, 1991, 7(4):500-514 doi: 10.1109/70.86080
    Wee L B, Walker M W. On the dynamics of contact between space robots and configuration control for impact minimization. IEEE Transactions on Robotics and Automation, 1993, 9(5):581-591 doi: 10.1109/70.258051
    Ulrich S, Sasiadek J Z. Extended Kalman filtering for flexible joint space robot control. In:Proceedings of the 2011 American Control Conference. San Francisco, CA:IEEE, 2011. 1021-1026
    Campion G, Bastin G, D'Andrea-Novel B. Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Transactions on Robotics and Automation, 1996, 12(1):47-62 doi: 10.1109/70.481750
    Dixon W E, Dawson D M, Zergeroglu E, Behal A. Nonlinear Control of Wheeled Mobile Robots. London:Springer-Verlag, 2001.
    Dong W J. Tracking control of multiple-wheeled mobile robots with limited information of a desired trajectory. IEEE Transactions on Robotics, 2012, 28(1):262-268 doi: 10.1109/TRO.2011.2166436
    Chwa D. Fuzzy adaptive tracking control of wheeled mobile robots with state-dependent kinematic and dynamic disturbances. IEEE Transactions on Fuzzy Systems, 2012, 20(3):587-593 doi: 10.1109/TFUZZ.2011.2176738
    Siegwart R, Nourbakhsh I R, Scaramuzza D. Introduction to Autonomous Mobile Robots (Second edition). Cambridge:MIT Press, 2011.
    Blažič S. A novel trajectory-tracking control law for wheeled mobile robots. Robotics and Autonomous Systems, 2011, 59(11):1001-1007 doi: 10.1016/j.robot.2011.06.005
    Wei S M, Uthaichana K, Žefran M, DeCarlo R. Hybrid model predictive control for the stabilization of wheeled mobile robots subject to wheel slippage. IEEE Transactions on Control Systems Technology, 2013, 21(6):2181-2193 doi: 10.1109/TCST.2012.2227964
    Roman H T, Pellegrino B A, Sigrist W R. Pipe crawling inspection robots:an overview. IEEE Transactions on Energy Conversion, 1993, 8(3):576-583 doi: 10.1109/60.257076
    Roh S, Choi H R. Differential-drive in-pipe robot for moving inside urban gas pipelines. IEEE Transactions on Robotics, 2005, 21(1):1-17 doi: 10.1109/TRO.2004.838000
    Park J, Hyun D, Cho W H, Kim T H, Yang H S. Normal-force control for an in-pipe robot according to the inclination of pipelines. IEEE Transactions on Industrial Electronics, 2011, 58(12):5304-5310 doi: 10.1109/TIE.2010.2095392
    Murray R M, Walsh G, Sastry S S. Stabilization and tracking for nonholonomic control systems using time-varying state feedback. In:Proceedings of the 2nd IFAC Symposium on Nonlinear Control Systems Design 1992. Bordeaux, France:IFAC, 1993. 109-114
    Huang J S, Wen C Y, Wang W, Jiang Z P. Adaptive stabilization and tracking control of a nonholonomic mobile robot with input saturation and disturbance. Systems and Control Letters, 2013, 62(3):234-241 doi: 10.1016/j.sysconle.2012.11.020
    Chen H, Zhang J B, Chen B Y, Li B J. Global practical stabilization for non-holonomic mobile robots with uncalibrated visual parameters by using a switching controller. IMA Journal of Mathematical Control and Information, 2013, 30(4):543-557 doi: 10.1093/imamci/dns044
    Chen H, Wang C L, Zhang D K, Yang F. Finite-time robust stabilization of dynamic feedback nonholonomic mobile robots based on visual servoing with input saturation. In:Proceedings of the 10th World Congress on Intelligent Control and Automation (WCICA). Beijing, China:IEEE, 2012. 3686-3691
    Brockett R W. Asymptotic stability and feedback stabilization. Differential Geometric Control Theory. Boston:Birkhauser, 1983. 181-208
    Sordalen O J, Egeland O. Exponential stabilization of nonholonomic chained systems. IEEE Transactions on Automatic Control, 1995, 40(1):35-49 doi: 10.1109/9.362901
    Prieur C, Astolfi A. Robust stabilization of chained systems via hybrid control. IEEE Transactions on Automatic Control, 2003, 48(10):1768-1772 doi: 10.1109/TAC.2003.817909
    Hussein I I, Bloch A M. Optimal control of underactuated nonholonomic mechanical systems. IEEE Transactions on Automatic Control, 2008, 53(3):668-682 doi: 10.1109/TAC.2008.919853
    Qu Z, Wang J, Plaisted C E, Hull R A. Global-stabilizing near-optimal control design for nonholonomic chained systems. IEEE Transactions on Automatic Control, 2006, 51(9):1440-1456 doi: 10.1109/TAC.2006.880965
    Suruz Miah M, Gueaieb W. Optimal time-varying P-controller for a class of uncertain nonlinear systems. International Journal of Control, Automation and Systems, 2014, 12(4):722-73 doi: 10.1007/s12555-013-0234-2


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (1181) PDF downloads(9) Cited by()


    DownLoad:  Full-Size Img  PowerPoint