Volume 12
Issue 12
IEEE/CAA Journal of Automatica Sinica
| Citation: | S. Talukder and R. Kumar, “Robust safety and stability of partially observed nonlinear systems with parametric variability,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 12, pp. 2572–2588, Dec. 2025. doi: 10.1109/JAS.2025.125837 |
| [1] |
S. Talukder, M. Ibrahim, and R. Kumar, “Resilience indices for power/cyberphysical systems,” IEEE Trans. Syst., Man, Cybern.: Syst., vol. 51, no. 4, pp. 2159–2172, Apr. 2021. doi: 10.1109/TSMC.2020.3018706
|
| [2] |
G. F. Franklin, J. D. Powell, A. Emami-Naeini, and J. D. Powell, Feedback Control of Dynamic Systems. 4th ed. Upper Saddle River, USA: Prentice Hall, 2002.
|
| [3] |
J. Y. Choi and J. Farrell, “Adaptive observer backstepping control using neural networks,” IEEE Trans. Neural Netw., vol. 12, no. 5, pp. 1103–1112, Sept. 2001. doi: 10.1109/72.950139
|
| [4] |
Y. H. Kim and F. L. Lewis, “Neural network output feedback control of robot manipulators,” IEEE Trans. Robot. Autom., vol. 15, no. 2, pp. 301–309, Apr. 1999. doi: 10.1109/70.760351
|
| [5] |
Y. Zhang and F. Wang, “Observer-based fixed-time neural control for a class of nonlinear systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 7, pp. 2892–2902, Jul. 2022. doi: 10.1109/TNNLS.2020.3046865
|
| [6] |
B. Chen, H. Zhang, and C. Lin, “Observer-based adaptive neural network control for nonlinear systems in nonstrict-feedback form,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 1, pp. 89–98, Jan. 2016. doi: 10.1109/TNNLS.2015.2412121
|
| [7] |
S. J. Yoo, J. B. Park, and Y. H. Choi, “Adaptive output feedback control of flexible-joint robots using neural networks: Dynamic surface design approach,” IEEE Trans. Neural Netw., vol. 19, no. 10, pp. 1712–1726, Oct. 2008. doi: 10.1109/TNN.2008.2001266
|
| [8] |
E. Prempain and I. Postlethwaite, “Static output feedback stabilisation with H∞ performance for a class of plants,” Syst. and Control Lett., vol. 43, no. 3, pp. 159–166, Jul. 2001.
|
| [9] |
C. A. R. Crusius and A. Trofino, “Sufficient LMI conditions for output feedback control problems,” IEEE Trans. Autom. Control, vol. 44, no. 5, pp. 1053–1057, May 1999. doi: 10.1109/9.763227
|
| [10] |
L. El Ghaoui and S. I. Niculescu, Advances in Linear Matrix Inequality Methods in Control. Philadelphia, USA: SIAM, 2000.
|
| [11] |
L. El Ghaoui and V. Balakrishnan, “Synthesis of fixed-structure controllers via numerical optimization,” in Proc. 33rd IEEE Conf. Decision and Control, Lake Buena Vista, USA, 1994, pp. 2678−2683.
|
| [12] |
A. Hassibi, J. How, and S. Boyd, “A path-following method for solving BMI problems in control,” in Proc. American Control Conf., San Diego, USA, 1999, pp. 1385−1389.
|
| [13] |
Q. T. Dinh, S. Gumussoy, W. Michiels, and M. Diehl, “Combining convex-concave decompositions and linearization approaches for solving BMIs, with application to static output feedback,” IEEE Trans. Autom. Control, vol. 57, no. 6, pp. 1377–1390, Jun. 2012. doi: 10.1109/TAC.2011.2176154
|
| [14] |
A. K. Kostarigka and G. A. Rovithakis, “Prescribed performance output feedback/observer-free robust adaptive control of uncertain systems using neural networks,” IEEE Trans. Syst., Man, Cybern., Part B (Cybern.), vol. 41, no. 6, pp. 1483–1494, Dec. 2011. doi: 10.1109/TSMCB.2011.2154328
|
| [15] |
K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Netw., vol. 2, no. 5, pp. 359–366, Jul. 1989. doi: 10.1016/0893-6080(89)90020-8
|
| [16] |
B. Pang, E. Nijkamp, and Y. N. Wu, “Deep learning with TensorFlow: A review,” J. Educ. Behav. Stat., vol. 45, no. 2, pp. 227–248, Apr. 2020. doi: 10.3102/1076998619872761
|
| [17] |
E. Stevens, L. Antiga, and T. Viehmann, Deep Learning with PyTorch. Manning Publications, 2020.
|
| [18] |
A. Venkatraman, M. Hebert, and J. Bagnell, “Improving multi-step prediction of learned time series models,” in Proc. 29th AAAI Conf. Artificial Intelligence, Austin, USA, 2015.
|
| [19] |
S. Schaal, A. Ijspeert, and A. Billard, “Computational approaches to motor learning by imitation,” Philos. Trans. Roy. Soc. B: Biol. Sci., vol. 358, no. 1431, pp. 537–547, Mar. 2003. doi: 10.1098/rstb.2002.1258
|
| [20] |
R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. 2nd ed. Cambridge: A Bradford Book, 2018.
|
| [21] |
V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level control through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015. doi: 10.1038/nature14236
|
| [22] |
J. Schulman, S. Levine, P. Abbeel, M. I. Jordan, and P. Moritz, “Trust region policy optimization,” in Proc. 2nd Int. Conf. Machine Learning, Lille, France, 2015, pp. 1889−1897.
|
| [23] |
T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra, “Continuous control with deep reinforcement learning,” in Proc. 4th Int. Conf. Learning Representations, San Juan, Puerto Rico, 2016.
|
| [24] |
V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” in Proc. 33rd Int. Conf. Machine Learning, New York City, USA, 2016, pp. 1928−1937.
|
| [25] |
K. Choromanski, M. Rowland, V. Sindhwani, R. E. Turner, and A. Weller, “Structured evolution with compact architectures for scalable policy optimization,” in Proc. 35th Int. Conf. Machine Learning, Stockholmsmässan, Stockholm, Sweden, 2018, pp. 970−978.
|
| [26] |
I. Clavera, J. Rothfuss, J. Schulman, Y. Fujita, T. Asfour, and P. Abbeel, “Model-based reinforcement learning via meta-policy optimization,” in Proc. 2nd Conf. Robot Learning, Zürich, Switzerland, 2018, pp. 617−629.
|
| [27] |
T. Kurutach, I. Clavera, Y. Duan, A. Tamar, and P. Abbeel, “Model-ensemble trust-region policy optimization,” in Proc. 6th Int. Conf. Learning Representations, Vancouver, Canada, 2018.
|
| [28] |
A. Heuillet, F. Couthouis, and N. Díaz-Rodríguez, “Explainability in deep reinforcement learning,” Knowl.-Based Syst., vol. 214, p. 106685, Feb. 2021. doi: 10.1016/j.knosys.2020.106685
|
| [29] |
R. Benton and D. Smith, “Static output feedback stabilization with prescribed degree of stability,” IEEE Trans. Autom. Control, vol. 43, no. 10, pp. 1493–1496, Oct. 1998. doi: 10.1109/9.720516
|
| [30] |
J. C. Geromel, C. C. de Souza, and R. E. Skelton, “Static output feedback controllers: Stability and convexity,” IEEE Trans. Autom. Control, vol. 43, no. 1, pp. 120–125, Jan. 1998. doi: 10.1109/9.654912
|
| [31] |
T. Iwasaki and R. E. Skelton, “The XY-centring algorithm for the dual LMI problem: A new approach to fixed-order control design,” Int. J. Control, vol. 62, no. 6, pp. 1257–1272, Dec. 1995. doi: 10.1080/00207179508921598
|
| [32] |
K. M. Grigoriadis and E. B. Beran, “Alternating projection algorithms for linear matrix inequalities problems with rank constraints,” in Advances in Linear Matrix Inequality Methods in Control: Advances in Design and Control, L. El Ghaoui and S. I. Niculescu, Eds. Philadelphia, USA: SIAM, 1999, pp. 251−267.
|
| [33] |
D. Ankelhed, A. Helmersson, and A. Hansson, “A partially augmented Lagrangian method for low order H-infinity controller synthesis using rational constraints,” IEEE Trans. Autom. Control, vol. 57, no. 11, pp. 2901–2905, Nov. 2012. doi: 10.1109/TAC.2012.2191333
|
| [34] |
D. Ankelhed, A. Helmersson, and A. Hansson, “A quasi-newton interior point method for low order h-infinity controller synthesis,” IEEE Trans. Autom. Control, vol. 56, no. 6, pp. 1462–1467, Jun. 2011. doi: 10.1109/TAC.2011.2118930
|
| [35] |
D. Noll, M. Torki, and P. Apkarian, “Partially augmented lagrangian method for matrix inequality constraints,” SIAM J. Optim., vol. 15, no. 1, pp. 161−184, 2004.
|
| [36] |
M. S. Sadabadi and D. Peaucelle, “From static output feedback to structured robust static output feedback: A survey,” Annu. Rev. Control, vol. 42, pp. 11–26, Jun. 2016. doi: 10.1016/j.arcontrol.2016.09.014
|
| [37] |
Y. Ouyang, L. Dong, L. Xue, and C. Sun, “Adaptive control based on neural networks for an uncertain 2-DOF helicopter system with input deadzone and output constraints,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 3, pp. 807–815, May 2019. doi: 10.1109/JAS.2019.1911495
|
| [38] |
X. Wang, D. Ding, H. Dong, and X.-M. Zhang, “Neural-network-based control for discrete-time nonlinear systems with input saturation under stochastic communication protocol,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 4, pp. 766–778, Apr. 2021. doi: 10.1109/JAS.2021.1003922
|
| [39] |
Y. Luo, S. Zhao, D. Yang, and H. Zhang, “A new robust adaptive neural network backstepping control for single machine infinite power system with TCSC,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 48–56, Jan. 2020. doi: 10.1109/JAS.2019.1911798
|
| [40] |
D. Liu, S. Xue, B. Zhao, B. Luo, and Q. Wei, “Adaptive dynamic programming for control: A survey and recent advances,” IEEE Trans. Syst., Man, Cybern.: Syst., vol. 51, no. 1, pp. 142–160, Jan. 2021. doi: 10.1109/TSMC.2020.3042876
|
| [41] |
L. Kong, W. He, C. Yang, and C. Sun, “Robust neurooptimal control for a robot via adaptive dynamic programming,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 6, pp. 2584–2594, Jun. 2021. doi: 10.1109/TNNLS.2020.3006850
|
| [42] |
R. Song and F. L. Lewis, “Robust optimal control for a class of nonlinear systems with unknown disturbances based on disturbance observer and policy iteration,” Neurocomputing, vol. 390, pp. 185–195, May 2020. doi: 10.1016/j.neucom.2020.01.082
|
| [43] |
X. Yang, D. Liu, D. Wang, and Q. Wei, “Discrete-time online learning control for a class of unknown nonaffine nonlinear systems using reinforcement learning,” Neural Netw., vol. 55, pp. 30–41, Jul. 2014. doi: 10.1016/j.neunet.2014.03.008
|
| [44] |
Q. Wei, D. Liu, and X. Yang, “Infinite horizon self-learning optimal control of nonaffine discrete-time nonlinear systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 4, pp. 866–879, Apr. 2015. doi: 10.1109/TNNLS.2015.2401334
|
| [45] |
M. Jin and J. Lavaei, “Control-theoretic analysis of smoothness for stability-certified reinforcement learning,” in Proc. IEEE Conf. Decision and Control, Miami, USA, 2018, pp. 6840−6847.
|
| [46] |
H. Yin, P. Seiler, and M. Arcak, “Stability analysis using quadratic constraints for systems with neural network controllers,” IEEE Trans. Autom. Control, vol. 67, no. 4, pp. 1980–1987, Apr. 2022. doi: 10.1109/TAC.2021.3069388
|
| [47] |
A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P. Tabuada, “Control barrier functions: Theory and applications,” in Proc. 18th European Control Conf., Naples, Italy, 2019, pp. 3420−3431.
|
| [48] |
S. Talukder and R. Kumar, “Robust stability of neural-network-controlled nonlinear systems with parametric variability,” IEEE Trans. Syst., Man, Cybern.: Syst., vol. 53, no. 8, pp. 4820–4832, Aug. 2023. doi: 10.1109/TSMC.2023.3257269
|
| [49] |
H. Yin, P. Seiler, M. Jin, and M. Arcak, “Imitation learning with stability and safety guarantees,” IEEE Control Syst. Lett., vol. 6, pp. 409−414, 2022.
|
| [50] |
K. G. Vamvoudakis and F. L. Lewis, “Online actor-critic algorithm to solve the continuous-time infinite horizon optimal control problem,” Automatica, vol. 46, no. 5, pp. 878–888, May 2010. doi: 10.1016/j.automatica.2010.02.018
|
| [51] |
H. Dai, B. Landry, L. Yang, M. Pavone, and R. Tedrake, “Lyapunov-stable neural-network control,” arXiv preprint arXiv: 2109.14152, 2021.
|
| [52] |
C. Makkar, W. E. Dixon, W. G. Sawyer, and G. Hu, “A new continuously differentiable friction model for control systems design,” in Proc. IEEE/ASME Int. Conf. Advanced Intelligent Mechatronics, Monterey, USA, 2005, pp. 600−605.
|
| [53] |
Z. Zuo, X. Ju, and Z. Ding, “Control of gear transmission servo systems with asymmetric deadzone nonlinearity,” IEEE Trans. Control Syst. Technol., vol. 24, no. 4, pp. 1472–1479, Jul. 2016. doi: 10.1109/TCST.2015.2493119
|
| [54] |
H. K. Khalil, Nonlinear Control. Boston, USA: Pearson, 2015.
|
| [55] |
L. Vu and D. Liberzon, “Common Lyapunov functions for families of commuting nonlinear systems,” Syst. Control Lett., vol. 54, no. 5, pp. 405–416, May 2005. doi: 10.1016/j.sysconle.2004.09.006
|
| [56] |
D. Liberzon, Switching in Systems and Control. Boston, USA: Birkhäuser, 2003.
|
| [57] |
S. Boyd, V. Balakrishnan, E. Feron, and L. ElGhaoui, “Control system analysis and synthesis via linear matrix inequalities,” in Proc. American Control Conf., San Francisco, USA, 1993, pp. 2147−2154.
|
| [58] |
R. Findeisen, L. Imsland, F. Allgower, and B. A. Foss, “State and output feedback nonlinear model predictive control: An overview,” Eur. J. Control, vol. 9, no. 2−3, pp. 190–206, Dec. 2003. doi: 10.3166/ejc.9.190-206
|
| [59] |
S. Gao, S. Kong, and E. M. Clarke, “dReal: An SMT solver for nonlinear theories over the reals,” in Proc. 24th Int. Conf. Autom. Deduction, Lake Placid, USA, 2013, pp. 208−214.
|
| [60] |
S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory. Philadelphia, USA: SIAM, 1994.
|
| [61] |
P. S. Kundur and O. P. Malik, Power System Stability and Control. 2nd ed. New York, UAS: McGraw-Hill Education, 2022.
|
| [62] |
Transmission system planning performance requirements. [Online]. Available: https://www.nerc.com/layouts/15/PrintStandard.aspx?standardnumber=TPL-001-4&title=Transmission%20System%20Planning%20Performance%20Requirements&jurisdiction=United%20States
|
| [63] |
D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proc. 3rd Int. Conf. Learning Representations, San Diego, USA, 2015.
|
| [64] |
H. Gouk, E. Frank, B. Pfahringer, and M. J. Cree, “Regularisation of neural networks by enforcing Lipschitz continuity,” Mach. Learn., vol. 110, no. 2, pp. 393–416, Feb. 2021. doi: 10.1007/s10994-020-05929-w
|
| [65] |
E. Okyere, A. Bousbaine, G. T. Poyi, A. K. Joseph, and J. M. Andrade, “LQR controller design for quad-rotor helicopters,” J. Eng., vol. 2019, no. 17, pp. 4003–4007, Jun. 2019.
|
| [66] |
L. Chrif and Z. M. Kadda, “Aircraft control system using LQG and LQR controller with optimal estimation-Kalman filter design,” Proc. Eng., vol. 80, pp. 245−257, 2014.
|
| [67] |
K. D. Rao and S. Kumar, “Modeling and simulation of quarter car semi active suspension system using LQR controller,” in Proc. the 3rd International Conf. Frontiers of Intelligent Computing: Theory and Applications: Volume 1, S. C. Satapathy, B. N. Biswal, S. K. Udgata, and J. K. Mandal, Eds. Cham, Germany: Springer, 2015, pp. 441−448.
|
| [68] |
A. Ilka, “Matlab/Octave toolbox for structurable and robust output-feedback LQR design,” IFAC-PapersOnLine, vol. 51, no. 4, pp. 598–603, May 2018. doi: 10.1016/j.ifacol.2018.06.161
|