A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 13 Issue 1
Jan.  2026

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 19.2, Top 1 (SCI Q1)
    CiteScore: 28.2, Top 1% (Q1)
    Google Scholar h5-index: 95, TOP 5
Turn off MathJax
Article Contents
L. Menini, C. Possieri, and A. Tornambe, “On the use of the Nelder-Mead simplex method in control design and systems theory,” IEEE/CAA J. Autom. Sinica, vol. 13, no. 1, pp. 186–204, Jan. 2026. doi: 10.1109/JAS.2025.125759
Citation: L. Menini, C. Possieri, and A. Tornambe, “On the use of the Nelder-Mead simplex method in control design and systems theory,” IEEE/CAA J. Autom. Sinica, vol. 13, no. 1, pp. 186–204, Jan. 2026. doi: 10.1109/JAS.2025.125759

On the Use of the Nelder-Mead Simplex Method in Control Design and Systems Theory

doi: 10.1109/JAS.2025.125759
Funds:  This work was partially supported by the Italian Ministry for Research in the framework of the 2020 Program for Research Projects of National Interest (2020RTWES4)
More Information
  • The Nelder-Mead simplex method is a well-known algorithm enabling the minimization of functions that are not available in closed-form and that need not be differentiable or convex. Furthermore, it is particularly parsimonious on the number of function evaluations, thus making it preferable to convex optimization paradigms in the case, common when dealing with control design problems, that the objective function of the optimization problem is non-differentiable, non-convex, and its closed-form is not available or difficult to be computed analytically. The main goal of this paper is to show how the joint use of the Nelder-Mead simplex method and the Morrison algorithm can be successfully used to solve relevant and challenging control problems that cannot be easily solved using analytic methods. In particular, it is shown how the problems of strong stabilization, static output feedback stabilization, and design of robust controllers having fixed structure can be framed as optimization problems, which, in turn, can be efficiently solved by coupling the two above mentioned algorithms. The performance of this procedure is compared with state-of-the-art techniques on dozens of static output feedback benchmark case studies, and its effectiveness is demonstrated by several examples.

     

  • loading
  • 1 In Table I, the symbol “>” denotes that the determined solution is not stabilizing, the symbol “t” that the execution timed out after 2000 s, and the symbol “e” that a numerical error occurred.
  • [1]
    R. M. Murray, Optimization-Based Control. Pasadena, USA: California Institute of Technology, 2009.
    [2]
    L. El Ghaoui and V. Balakrishnan, “Synthesis of fixed-structure controllers via numerical optimization,” in Proc. 33rd IEEE Conf. Decision and Control, Lake Buena Vista, USA, 1994, pp. 2678–2683.
    [3]
    L. Acerbi and W. J. Ma, “Practical Bayesian optimization for model fitting with Bayesian adaptive direct search,” in Proc. 31st Int. Conf. Neural Information Processing Systems, Long Beach, USA, 2017, pp. 1834–1844.
    [4]
    A. Howell and J. K. Hedrick, “Nonlinear observer design via convex optimization,” in Proc. American Control Conf., Anchorage, USA, 2002, pp. 2088–2093.
    [5]
    R. Mascaro, L. Teixeira, T. Hinzmann, R. Siegwart, and M. Chli, “GOMSF: Graph-optimization based multi-sensor fusion for robust UAV pose estimation,” in Proc. Int. Conf. Robotics and Automation, Brisbane, Australia, 2018, pp. 1421–1428.
    [6]
    S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory. Philadelphia, USA: SIAM, 1994.
    [7]
    C. Scherer and S. Weiland, “Linear Matrix Inequalities in Control,” in The Control Systems Handbook, 2nd ed. W. S. Levine, Ed. Boca Raton: CRC Press, 2011, pp. 1–30.
    [8]
    D. Q. Mayne and H. Michalska, “Receding horizon control of nonlinear systems,” in Proc. 27th IEEE Conf. Decision and Control, Austin, USA, 1988, pp. 464–465.
    [9]
    A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The explicit linear quadratic regulator for constrained systems,” Automatica, vol. 38, no. 1, pp. 3–20, Jan. 2002. doi: 10.1016/S0005-1098(01)00174-1
    [10]
    M. J. D. Powell, “Direct search algorithms for optimization calculations,” Acta Numer., vol. 7, pp. 287–336, Jan. 1998. doi: 10.1017/S0962492900002841
    [11]
    J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J., vol. 7, no. 4, pp. 308–313, Jan. 1965. doi: 10.1093/comjnl/7.4.308
    [12]
    D. D. Morrison, “Optimization by least squares,” SIAM J. Numer. Anal., vol. 5, no. 1, pp. 83–88, Mar. 1968. doi: 10.1137/0705006
    [13]
    F. Leibfritz, “COMPl_eib: Constrained matrix-optimization problem library-a collection of test examples for nonlinear semidefinite programs, control system design and related problems,” Department of Mathematics, University of Trier, Trier, Germany, Tech. Rep. D-54286, 2004.
    [14]
    M. Tajjudin, N. Ishak, H. Ismail, M. H. F. Rahiman, and R. Adnan, “Optimized PID control using Nelder-Mead method for electro-hydraulic actuator systems,” in Proc. IEEE Control and System Graduate Research Colloq., Shah Alam, Malaysia, 2011, pp. 90–93.
    [15]
    V. Sinlapakun and W. Assawinchaichote, “Optimized PID controller design for electric furnace temperature systems with Nelder Mead algorithm,” in Proc. 12th Int. Conf. Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Hua Hin, Thailand, 2015, pp. 1–4.
    [16]
    D. Izci, B. Hekimoǧlu, and S. Ekinci, “A new artificial ecosystem-based optimization integrated with Nelder-Mead method for PID controller design of buck converter,” Alexandria Eng. J., vol. 61, no. 3, pp. 2030–2044, Mar. 2022. doi: 10.1016/j.aej.2021.07.037
    [17]
    W. Chagra, H. Degachi, and M. Ksouri, “Nonlinear model predictive control based on Nelder Mead optimization method,” Nonlinear Dyn., vol. 92, no. 2, pp. 127–138, Apr. 2018. doi: 10.1007/s11071-017-3544-8
    [18]
    S. Ijaz, M. T. Hamayun, L. Yan, and M. F. Mumtaz, “Fractional order modeling and control of twin rotor aero dynamical system using Nelder Mead optimization,” J. Electr. Eng. Technol., vol. 11, no. 6, pp. 1863–1871, Nov. 2016. doi: 10.5370/JEET.2016.11.6.1863
    [19]
    W. M. Baig, Z. Hou, and S. Ijaz, “Fractional order controller design for a semi-active suspension system using Nelder-Mead optimization,” in Proc. 29th Chinese Control and Decision Conf., Chongqing, China, 2017, pp. 2808–2813.
    [20]
    C.-C. Fuh, H.-H. Tsai, and H. C. Lin, “Parameter identification of linear time-invariant systems with large measurement noises,” in Proc. 12th World Congr. on Intelligent Control and Automation, Guilin, China, 2016, pp. 2874–2878.
    [21]
    S. Xu, Y. Wang, and Z. Wang, “Parameter estimation of proton exchange membrane fuel cells using eagle strategy based on JAYA algorithm and Nelder-Mead simplex method,” Energy, vol. 173, pp. 457–467, Apr. 2019. doi: 10.1016/j.energy.2019.02.106
    [22]
    M. Johnson, N. Aghasadeghi, and T. Bretl, “Inverse optimal control for deterministic continuous-time nonlinear systems,” in Proc. 52nd IEEE Conf. Decision and Control, Firenze, Italy, 2013, pp. 2906–2913.
    [23]
    C. Zhong, G. Li, Z. Meng, H. Li, A. R. Yildiz, and S. Mirjalili, “Starfish optimization algorithm (SFOA): A bio-inspired metaheuristic algorithm for global optimization compared with 100 optimizers,” Neural Comput. Appl., vol. 37, no. 5, pp. 3641–3683, Feb. 2025. doi: 10.1007/s00521-024-10694-1
    [24]
    P. Mehta, B. S. Yildiz, S. Kumar, N. Pholdee, S. M. Sait, N. Panagant, S. Bureerat, and A. R. Yildiz, “A Nelder Mead-infused INFO algorithm for optimization of mechanical design problems,” Mater. Test., vol. 64, no. 8, pp. 1172–1182, Aug. 2022. doi: 10.1515/mt-2022-0119
    [25]
    A. R. Yıldız, B. S. Yıldız, S. M. Sait, S. Bureerat, and N. Pholdee, “A new hybrid Harris Hawks-Nelder-Mead optimization algorithm for solving design and manufacturing problems,” Mater. Test., vol. 61, no. 8, pp. 735–743, Jul. 2019. doi: 10.3139/120.111378
    [26]
    A. R. Yildiz and P. Mehta, “Manta ray foraging optimization algorithm and hybrid Taguchi SALP swarm-Nelder-Mead algorithm for the structural design of engineering components,” Mater. Test., vol. 64, no. 5, pp. 706–713, May 2022. doi: 10.1515/mt-2022-0012
    [27]
    M. X. Cohen, Linear Algebra: Theory, Intuition, Code. Bucharest, Romania: Sincxpress, 2021.
    [28]
    C. Daskalakis, S. Skoulakis, and M. Zampetakis, “The complexity of constrained min-max optimization,” in Proc. 53rd Annu. ACM SIGACT Symp. Theory of Computing, 2021, pp. 1466–1478.
    [29]
    W. Spendley, G. R. Hext, and F. R. Himsworth, “Sequential application of simplex designs in optimisation and evolutionary operation,” Technometrics, vol. 4, no. 4, pp. 441–461, 1962.
    [30]
    B. D. O. Anderson, and R. W. Scott, “Output feedback stabilization—solution by algebraic geometry methods,” Proc. IEEE, vol. 65, no. 6, pp. 849–861, Jun. 1977. doi: 10.1109/PROC.1977.10581
    [31]
    L. Menini, C. Possieri, and A. Tornambè, “Algebraic methods for multiobjective optimal design of control feedbacks for linear systems,” IEEE Trans. Autom. Control, vol. 63, no. 12, pp. 4188–4203, Dec. 2018. doi: 10.1109/TAC.2018.2800784
    [32]
    D. A. Cox, J. Little, and D. O’Shea, Ideals, Varieties, and Algorithms. 4th ed. Cham, Germany: Springer, 2015.
    [33]
    J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder-Mead simplex method in low dimensions,” SIAM J. Optim., vol. 9, no. 1, pp. 112–147, Jan. 1998. doi: 10.1137/S1052623496303470
    [34]
    J. C. Nash, Compact Numerical Methods for Computers: Linear Algebra and Function Minimisation. New York, USA: Routledge, 2018.
    [35]
    K. I. M. McKinnon, “Convergence of the Nelder-Mead simplex method to a nonstationary point,” SIAM J. Optim., vol. 9, no. 1, pp. 148–158, Jan. 1998. doi: 10.1137/S1052623496303482
    [36]
    S. Wessing, “Proper initialization is crucial for the Nelder-Mead simplex search,” Optim. Lett., vol. 13, no. 4, pp. 847–856, Jun. 2019. doi: 10.1007/s11590-018-1284-4
    [37]
    J. C. Lagarias, B. Poonen, and M. H. Wright, “Convergence of the restricted Nelder-Mead algorithm in two dimensions,” SIAM J. Optim., vol. 22, no. 2, pp. 501–532, Jan. 2012. doi: 10.1137/110830150
    [38]
    A. Galántai, “Convergence of the Nelder-Mead method,” Numer. Algorithms, vol. 90, no. 3, pp. 1043–1072, Jul. 2022. doi: 10.1007/s11075-021-01221-7
    [39]
    A. Galántai, “The Nelder–Mead simplex algorithm is sixty years old: New convergence results and open questions,” Algorithms, vol. 17, no. 11, p. 523, Nov. 2024. doi: 10.3390/a17110523
    [40]
    D. C. Youla, J. J. Jr. Bongiorno, and C. N. Lu, “Single-loop feedback-stabilization of linear multivariable dynamical plants,” Automatica, vol. 10, no. 2, pp. 159–173, Mar. 1974. doi: 10.1016/0005-1098(74)90021-1
    [41]
    J. C. Doyle, B. A. Francis, and A. R. Tannenbaum, Feedback Control Theory. North Chelmsford, USA: Courier Corporation, 2013.
    [42]
    D. U. Campos-Delgado and K. Zhou, “A parametric optimization approach to $H_{\infty}$ and $H_2$ strong stabilization,” Automatica, vol. 39, no. 7, pp. 1205–1211, Jul. 2003. doi: 10.1016/S0005-1098(03)00065-7
    [43]
    P. Cheng, Y.-Y. Cao, and Y. Sun, “Some new results on strong $\gamma_k-\gamma_{cl} H_{\infty}$ stabilization,” IEEE Trans. Autom. Control, vol. 53, no. 5, pp. 1268–1273, Jun. 2008. doi: 10.1109/TAC.2008.921038
    [44]
    S. Gumussoy and H. Ozbay, “Remarks on strong stabilization and stable $H_{\infty}$ controller design,” IEEE Trans. Autom. Control, vol. 50, no. 12, pp. 2083–2087, Dec. 2005. doi: 10.1109/TAC.2005.860271
    [45]
    L. Menini, C. Possieri, and A. Tornambe, “Exact certificates for strong stabilization via numerical algebraic geometry,” IEEE Control Syst. Lett., vol. 7, pp. 1411–1416, Feb. 2023. doi: 10.1109/LCSYS.2023.3244695
    [46]
    M. S. Sadabadi and D. Peaucelle, “From static output feedback to structured robust static output feedback: A survey,” Annu. Rev. Control, vol. 42, pp. 11–26, 2016.
    [47]
    P. C. Parks, “A new proof of Hermite’s stability criterion and a generalization of Orlando’s formula,” Int. J. Control, vol. 26, no. 2, pp. 197–206, 1977.
    [48]
    J. Löfberg, “YALMIP: A toolbox for modeling and optimization in MATLAB,” in Proc. Int. Conf. Robotics and Automation, Taipei, China, 2004, pp. 284–289.
    [49]
    A. Wächter and L. T. Biegler, “On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming,” Math. Program., vol. 106, no. 1, pp. 25–57, Mar. 2006. doi: 10.1007/s10107-004-0559-y
    [50]
    J. Fiala, M. Kočvara, and M. Stingl, “PENLAB: A MATLAB solver for nonlinear semidefinite optimization,” arXiv preprint arXiv: 1311.5240, 2013.
    [51]
    J. V. Burke, D. Henrion, A. S. Lewis, and M. L. Overton, “HIFOO-a MATLAB package for fixed-order controller design and $H_{\infty}$ optimization,” IFAC Proc. Vol., vol. 39, no. 9, pp. 339−344, 2006.
    [52]
    F. R. Gantmacher, The Theory of Matrices. North Chelmsford, USA: Courier Corporation, 1959.
    [53]
    L. Menini, C. Possieri, and A. Tornambe, “Distance to internal instability of linear time-invariant systems under structured perturbations,” IEEE Trans. Autom. Control, vol. 66, no. 5, pp. 1941–1956, May 2021. doi: 10.1109/TAC.2020.3004350
    [54]
    G. E. Collins, “Quantifier elimination for real closed fields by cylindrical algebraic decomposition: A synopsis,” ACM SIGSAM Bull., vol. 10, no. 1, pp. 10–12, Feb. 1976. doi: 10.1145/1093390.1093393

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article Metrics

    Article views (43) PDF downloads(0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return