Volume 12
Issue 12
IEEE/CAA Journal of Automatica Sinica
| Citation: | J. Zhang, J. Cheng, H. Zhang, and Y. Huang, “RBP-OP: Distributed robust belief propagation method with odometry preintegration for multirobot collaborative localization,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 12, pp. 2427–2454, Dec. 2025. doi: 10.1109/JAS.2025.125711 |
| [1] |
S. Feng, L. Zeng, J. Liu, Y. Yang, and W. Song, “Multi-UAVs collaborative path planning in the cramped environment,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 2, pp. 529–538, Feb. 2024. doi: 10.1109/JAS.2023.123945
|
| [2] |
S. Wang, L. Chen, D. Gu, and H. Hu, “Cooperative localization of AUVs using moving horizon estimation,” IEEE/CAA J. Autom. Sinica, vol. 1, no. 1, pp. 68–76, Jan. 2014. doi: 10.1109/JAS.2014.7004622
|
| [3] |
M. Z. Win, F. Meyer, Z. Liu, W. Dai, S. Bartoletti, and A. Conti, “Efficient multisensor localization for the internet of things: Exploring a new class of scalable localization algorithms,” IEEE Signal Process. Mag., vol. 35, no. 5, pp. 153–167, Sept. 2018. doi: 10.1109/MSP.2018.2845907
|
| [4] |
S. Si, Y. Huang, Y. Nie, L. Xiao, B. Dai, and Y. Zhang, “ROSE: Covisibility region aware 3D-LiDAR SLAM based on generative road surface model and long-term association,” IEEE Trans. Aerosp. Electron. Syst., vol. 60, no. 6, pp. 7785–7803, Dec. 2024. doi: 10.1109/TAES.2024.3421173
|
| [5] |
S. Si, Y. Huang, Y. Nie, L. Xiao, D. Zhao, B. Dai, and Y. Zhang, “TOM-odometry: A generalized localization framework based on topological map and odometry,” IEEE Trans. Aerosp. Electron. Syst., vol. 59, no. 3, pp. 2713–2732, Jun. 2023. doi: 10.1109/TAES.2022.3219802
|
| [6] |
Y. Huang, C. Xue, F. Zhu, W. Wang, Y. Zhang, and J. A. Chambers, “Adaptive recursive decentralized cooperative localization for multirobot systems with time-varying measurement accuracy,” IEEE Trans. Instrum. Meas., vol. 70, p. 8501525, 2021.
|
| [7] |
H. Lee, H. K. Kim, S. H. Oh, and S. H. Lee, “Machine learning-aided cooperative localization under a dense urban environment: Demonstrates universal feasibility,” IEEE Veh. Technol. Mag., vol. 19, no. 3, pp. 78–89, Sept. 2024. doi: 10.1109/MVT.2024.3387648
|
| [8] |
D. Wang, H. Qi, B. Lian, Y. Liu, and H. Song, “Resilient decentralized cooperative localization for multisource multirobot system,” IEEE Trans. Instrum. Meas., vol. 72, p. 8504713, 2023.
|
| [9] |
S. I. Roumeliotis and G. A. Bekey, “Distributed multirobot localization,” IEEE Trans. Rob. Autom., vol. 18, no. 5, pp. 781–795, Oct. 2002. doi: 10.1109/TRA.2002.803461
|
| [10] |
A. Prorok, A. Bahr, and A. Martinoli, “Low-cost collaborative localization for large-scale multi-robot systems,” in Proc. IEEE Int. Conf. Robotics and Autom., Saint Paul, USA, 2012, pp. 4236−4241.
|
| [11] |
N. Bargshady, K. Pahlavan, and N. A. Alsindi, “Hybrid WiFi/UWB, cooperative localization using particle filter,” in Proc. Int. Conf. Computing, Networking and Communications, Garden Grove, USA, 2015, pp. 1055−1060.
|
| [12] |
A. Howard, M. J. Matarić, and G. S. Sukhatme, “Localization for mobile robot teams: A distributed MLE approach,” in Experimental Robotics VIII, B. Siciliano and P. Dario, Eds. Berlin, Heidelberg, German: Springer, 2003, pp. 146−155.
|
| [13] |
L. Paull, M. Seto, and J. J. Leonard, “Decentralized cooperative trajectory estimation for autonomous underwater vehicles,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Chicago, USA, 2014, pp. 184−191.
|
| [14] |
S. S. Kia, S. F. Rounds, and S. Martinez, “A centralized-equivalent decentralized implementation of extended Kalman filters for cooperative localization,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Chicago, USA, 2014, pp. 3761−3766.
|
| [15] |
S. S. Kia, J. Hechtbauer, D. Gogokhiya, and S. Martínez, “Server-assisted distributed cooperative localization over unreliable communication links,” IEEE Trans. Robot., vol. 34, no. 5, pp. 1392–1399, Oct. 2018. doi: 10.1109/TRO.2018.2830411
|
| [16] |
L. Luft, T. Schubert, S. I. Roumeliotis, and W. Burgard, “Recursive decentralized localization for multi-robot systems with asynchronous pairwise communication,” Int. J. Rob. Res., vol. 37, no. 10, pp. 1152–1167, Sept. 2018. doi: 10.1177/0278364918760698
|
| [17] |
J. Yan, F. Zhu, Y. Huang, and Y. Zhang, “Robust decentralized cooperative localization for multirobot system against measurement outliers,” IEEE Internet Things J., vol. 11, no. 10, pp. 17934–17947, May. 2024. doi: 10.1109/JIOT.2024.3360983
|
| [18] |
A. J. Davison and J. Ortiz, “FutureMapping 2: Gaussian belief propagation for spatial AI,” arXiv preprint arXiv: 1910.14139, 2019.
|
| [19] |
R. Murai, J. Ortiz, S. Saeedi, P. H. J. Kelly, and A. J. Davison, “A robot web for distributed many-device localization,” IEEE Trans. Robot., vol. 40, pp. 121–138, Jan. 2024. doi: 10.1109/TRO.2023.3324127
|
| [20] |
J. Ortiz, T. Evans, and A. J. Davison, “A visual introduction to Gaussian belief propagation,” arXiv preprint arXiv: 2107.02308, 2021.
|
| [21] |
J. Xiong, Z. Xiong, Y. Zhuang, J. W. Cheong, and A. G. Dempster, “Fault-tolerant cooperative positioning based on hybrid robust Gaussian belief propagation,” IEEE Trans. Intell. Transp. Syst., vol. 24, no. 6, pp. 6425–6431, Jun. 2023. doi: 10.1109/TITS.2023.3249251
|
| [22] |
J. Xiong, Z. Xiong, X. Xie, Y. Zhuang, Y. Zheng, S. Xiong, J. W. Cheong, and A. G. Dempster, “Integrity for belief propagation-based cooperative positioning,” IEEE Trans. Intell. Transp. Syst., vol. 25, no. 9, pp. 11345–11358, Sept. 2024. doi: 10.1109/TITS.2024.3361678
|
| [23] |
Y. Li, Y. Wang, W. Yu, and X. Guan, “Multiple autonomous underwater vehicle cooperative localization in anchor-free environments,” IEEE J. Oceanic Eng., vol. 44, no. 4, pp. 895–911, Oct. 2019. doi: 10.1109/JOE.2019.2935516
|
| [24] |
Y. Li, W. Yu, and X. Guan, “Hybrid TOA-AOA cooperative localization for multiple AUVs in the absence of anchors,” IEEE Trans. Industr. Inform., vol. 20, no. 2, pp. 2420–2431, Feb. 2024. doi: 10.1109/TII.2023.3266362
|
| [25] |
Y. Li, W. Yu, and X. Guan, “Current-aided multiple-AUV cooperative localization and target tracking in anchor-free environments,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 3, pp. 792–806, Mar. 2023. doi: 10.1109/JAS.2022.105989
|
| [26] |
J. Schiff, E. B. Sudderth, and K. Goldberg, “Nonparametric belief propagation for distributed tracking of robot networks with noisy inter-distance measurements,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, St. Louis, USA, 2009, pp. 1369−1376.
|
| [27] |
P.-Y. Lajoie, B. Ramtoula, F. Wu, and G. Beltrame, “Towards collaborative simultaneous localization and mapping: A survey of the current research landscape,” Field Robot., vol. 2, pp. 971−1000, 2022.
|
| [28] |
P. Zhu, P. Geneva, W. Ren, and G. Huang, “Distributed visual-inertial cooperative localization,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Prague, Czech Republic, 2021, pp. 8714−8721.
|
| [29] |
R. He, Y. Shan, and K. Huang, “Robust cooperative localization with failed communication and biased measurements,” IEEE Robot. Autom. Lett., vol. 9, no. 3, pp. 2997–3004, Mar. 2024. doi: 10.1109/LRA.2024.3362682
|
| [30] |
Y. Zhao, W. Xing, H. Yuan, and P. Shi, “A collaborative control framework with multi-leaders for AUVs based on unscented particle filter,” J. Franklin Inst., vol. 353, no. 3, pp. 657–669, Feb. 2016. doi: 10.1016/j.jfranklin.2015.11.016
|
| [31] |
T.-K. Chang, K. Chen, and A. Mehta, “Resilient and consistent multirobot cooperative localization with covariance intersection,” IEEE Trans. Robot., vol. 38, no. 1, pp. 197–208, Feb. 2022. doi: 10.1109/TRO.2021.3104965
|
| [32] |
F. Zhu, Y. Huang, C. Xue, L. Mihaylova, and J. Chambers, “A sliding window variational outlier-robust Kalman filter based on Student’s t-noise modeling,” IEEE Trans. Aerosp. Electron. Syst., vol. 58, no. 5, pp. 4835–4849, Oct. 2022. doi: 10.1109/TAES.2022.3164012
|
| [33] |
H. A. P. Blom and Y. Bar-Shalom, “The interacting multiple model algorithm for systems with Markovian switching coefficients,” IEEE Trans. Autom. Contr., vol. 33, no. 8, pp. 780–783, Aug. 1988. doi: 10.1109/9.1299
|
| [34] |
Y. Huang, Y. Zhang, Y. Zhao, P. Shi, and J. A. Chambers, “A novel outlier-robust Kalman filtering framework based on statistical similarity measure,” IEEE Trans. Autom. Contr., vol. 66, no. 6, pp. 2677–2692, Jun. 2021. doi: 10.1109/TAC.2020.3011443
|
| [35] |
B. Chen, X. Liu, H. Zhao, and J. C. Principe, “Maximum correntropy Kalman filter,” Automatica, vol. 76, pp. 70–77, Feb. 2017. doi: 10.1016/j.automatica.2016.10.004
|
| [36] |
B. Shen, X. Wang, and L. Zou, “Maximum correntropy Kalman filtering for non-Gaussian systems with state saturations and stochastic nonlinearities,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 5, pp. 1223–1233, May. 2023. doi: 10.1109/JAS.2023.123195
|
| [37] |
M. V. Kulikova, “Chandrasekhar-based maximum correntropy Kalman filtering with the adaptive kernel size selection,” IEEE Trans. Autom. Contr., vol. 65, no. 2, pp. 741–748, Feb. 2020. doi: 10.1109/TAC.2019.2919341
|
| [38] |
M. Bai, C. Sun, and Y. Zhang, “A robust generalized t distribution-based Kalman filter,” IEEE Trans. Aerosp. Electron. Syst., vol. 58, no. 5, pp. 4771–4781, Oct. 2022. doi: 10.1109/TAES.2022.3160984
|
| [39] |
G. Revach, N. Shlezinger, X. Ni, A. L. Escoriza, R. J. G. van Sloun, and Y. C. Eldar, “KalmanNet: Neural network aided Kalman filtering for partially known dynamics,” IEEE Trans. Signal Process., vol. 70, pp. 1532−1547, 2022.
|
| [40] |
G. Choi, J. Park, N. Shlezinger, Y. C. Eldar, and N. Lee, “Split-KalmanNet: A robust model-based deep learning approach for state estimation,” IEEE Trans. Veh. Technol., vol. 72, no. 9, pp. 12326–12331, Sept. 2023. doi: 10.1109/TVT.2023.3270353
|
| [41] |
Y. Yuan, Y. Wang, and X. Luo, “A node-collaboration-informed graph convolutional network for highly accurate representation to undirected weighted graph,” IEEE Trans. Neural Netw. Learn. Syst., vol. 36, no. 6, pp. 11507–11519, Jun. 2025. doi: 10.1109/TNNLS.2024.3514652
|
| [42] |
J. Chen, Y. Yuan, and X. Luo, “SDGNN: Symmetry-preserving dual-stream graph neural networks,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 7, pp. 1717–1719, Jul. 2024. doi: 10.1109/JAS.2024.124410
|
| [43] |
L. Wang, K. Liu, and Y. Yuan, “GT-A2T: Graph tensor alliance attention network,” IEEE/CAA J. Autom. Sinica, vol 12, no. 10, pp. 2165−2167, Oct. 2025.
|
| [44] |
S. Cheng, C. Quilodrán-Casas, S. Ouala, A. Farchi, C. Liu, P. Tandeo, R. Fablet, D. Lucor, B. Iooss, J. Brajard, D. Xiao, T. Janjic, W. Ding, Y. Guo, A. Carrassi, M. Bocquet, and R. Arcucci, “Machine learning with data assimilation and uncertainty quantification for dynamical systems: A review,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 6, pp. 1361–1387, Jun. 2023. doi: 10.1109/JAS.2023.123537
|
| [45] |
Q. Yu, Y. Wang, and Y. Shen, “Robust distributed cooperative localization in wireless sensor networks with a mismatched measurement model,” IEEE Trans. Signal Process., vol. 72, pp. 4525−4540, 2024.
|
| [46] |
G. Wang, C. Yang, and X. Ma, “A novel robust nonlinear Kalman filter Based on multivariate Laplace distribution,” IEEE Trans. Circuits Syst. II: Express Briefs, vol. 68, no. 7, pp. 2705–2709, Jul. 2021.
|
| [47] |
M. Bai, Y. Huang, B. Chen, and Y. Zhang, “A novel robust Kalman filtering framework based on normal-skew mixture distribution,” IEEE Trans. Syst., Man, Cybern.: Syst., vol. 52, no. 11, pp. 6789–6805, Nov. 2022. doi: 10.1109/TSMC.2021.3098299
|
| [48] |
Y. Huang, Y. Zhang, N. Li, Z. Wu, and J. A. Chambers, “A novel robust student’s t-based Kalman filter,” IEEE Trans. Aerosp. Electron. Syst., vol. 53, no. 3, pp. 1545–1554, Jun. 2017. doi: 10.1109/TAES.2017.2651684
|
| [49] |
K. Wang, P. Wu, X. Li, S. He, and J. Li, “An adaptive outlier-robust Kalman filter based on sliding window and Pearson type VII distribution modeling,” Signal Process., vol. 216, p. 109306, Mar. 2024. doi: 10.1016/j.sigpro.2023.109306
|
| [50] |
S. Liang and X. Zhang, “A robust Kalman filter based on the Pearson type VII-Inverse Wishart distribution: Symmetrical treatment of time-varying measurement bias and heavy-tailed noise,” Symmetry, vol. 17, p. 1, Jan. 2025.
|
| [51] |
S. Bai, J. Lai, P. Lyu, Y. Cen, B. Wang, and X. Sun, “Graph-optimisation-based self-calibration method for IMU/odometer using preintegration theory,” J. Navig., vol. 75, no. 3, pp. 594–613, May. 2022. doi: 10.1017/S0373463321000722
|
| [52] |
Y. He, Y. Guo, A. Ye, and K. Yuan, “Camera-odometer calibration and fusion using graph based optimization,” in Proc. IEEE Int. Conf. Robotics and Biomimetics, Macau, China, 2017, pp. 1624−1629.
|
| [53] |
E. R. Potokar, D. McGann, and M. Kaess, “Robust preintegrated wheel odometry for off-Road autonomous ground vehicles,” IEEE Robot. Autom. Lett., vol. 9, no. 12, pp. 11649–11656, Dec. 2024. doi: 10.1109/LRA.2024.3496334
|
| [54] |
J. Xiong, X. Xie, Z. Xiong, Y. Zhuang, Y. Zheng, and C. Wang, “Adaptive message passing for cooperative positioning under unknown non-Gaussian noises,” IEEE Trans. Instrum. Meas., vol. 73, p. 8502114, 2024.
|
| [55] |
C. Xue, Y. Huang, C. Zhao, X. Li, L. Mihaylova, Y. Li, and J. A. Chambers, “A Gaussian-generalized-inverse-Gaussian joint-distribution-based adaptive MSCKF for visual-inertial odometry navigation,” IEEE Trans. Aerosp. Electron. Syst., vol. 59, no. 3, pp. 2307–2328, Jun. 2023. doi: 10.1109/TAES.2022.3213787
|
| [56] |
K. Y. Leung, Y. Halpern, T. D. Barfoot, and H. H. Liu, “The UTIAS multi-robot cooperative localization and mapping dataset,” Int. J. Rob. Res., vol. 30, no. 8, pp. 969–974, Jul. 2011. doi: 10.1177/0278364911398404
|
| [57] |
N. Trawny and S. I. Roumeliotis, “Indirect Kalman filter for 3D attitude estimation,” University of Minnesota, Minneapolis, USA, Tech. Rep. 2005−002, 2005.
|
| [58] |
J. Demšar, “Statistical comparisons of classifiers over multiple data sets,” J. Mach. Learn. Res., vol. 7, pp. 1–30, Dec. 2006.
|
| [59] |
J. H. Zar, “Spearman rank correlation,” in Encyclopedia of Biostatistics, Hoboken, NJ: John & Sons., 2005.
|
| [60] |
A. I. Mourikis and S. I. Roumeliotis, “Performance analysis of multirobot Cooperative localization,” IEEE Trans. Robot., vol. 22, no. 4, pp. 666–681, Aug. 2006. doi: 10.1109/TRO.2006.878957
|