Volume 12
Issue 12
IEEE/CAA Journal of Automatica Sinica
| Citation: | W. Mai, Z. Tang, W. Liu, J. Zhong, and H. Jin, “Evolutionary multitasking with multiple knowledge representations and elite vector guidance for solving large-scale multi-objective optimization problems,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 12, pp. 2553–2571, Dec. 2025. doi: 10.1109/JAS.2025.125483 |
| [1] |
J. Ou, X. Liu, L. Xing, J. Lv, Y. Hu, J. Zheng, J. Zou, and M. Li, “Solving many-objective delivery and pickup vehicle routing problem with time windows with a constrained evolutionary optimization algorithm,” Expert Syst. Appl., vol. 255, p. 124712, Dec. 2024. doi: 10.1016/j.eswa.2024.124712
|
| [2] |
A. C. Ramesh and G. Srivatsun, “Evolutionary Algorithm for overlapping community detection using a merged maximal cliques representation scheme,” Appl. Soft Comput., vol. 112, p. 107746, Nov. 2021. doi: 10.1016/j.asoc.2021.107746
|
| [3] |
F. Wang, H. Zhang, M.-C. Han, and L.-N. Xing, “Co-evolution based mixed-variable multi-objective particle swarm optimization for UAV cooperative multi-task allocation problem,” Chin. J. Comput., vol. 44, no. 10, pp. 1967–1983, Oct. 2021.
|
| [4] |
Y. Tian, L. Si, X. Zhang, R. Cheng, C. He, K. C. Tan, and Y. Jin, “Evolutionary large-scale multi-objective optimization: A Survey,” ACM Comput. Surv., vol. 54, no. 8, p. 174, Oct. 2021.
|
| [5] |
T. Weise, R. Chiong, and K. Tang, “Evolutionary optimization: Pitfalls and booby traps,” J. Comput. Sci. Technol., vol. 27, no. 5, pp. 907–936, Nov. 2012. doi: 10.1007/s11390-012-1274-4
|
| [6] |
W.-J. Hong, P. Yang and K. Tang, “Evolutionary computation for large-scale multi-objective optimization: A decade of progresses,” Int. J. Autom. Comput., vol. 18, no. 2, pp. 155–169, Jan. 2021. doi: 10.1007/s11633-020-1253-0
|
| [7] |
X. Zhang, Y. Tian, R. Cheng, and Y. Jin, “A decision variable clustering-based evolutionary algorithm for large-scale many-objective optimization,” IEEE Trans. Evol. Comput., vol. 22, no. 1, pp. 97–112, Feb. 2018. doi: 10.1109/TEVC.2016.2600642
|
| [8] |
S. Liu, Q. Lin, Y. Tian, and K. C. Tan, “A variable importance-based differential evolution for large-scale multiobjective optimization,” IEEE Trans. Cybern., vol. 52, no. 12, pp. 13048–13062, Dec. 2022. doi: 10.1109/TCYB.2021.3098186
|
| [9] |
L. Zhang, H. Zhang, H. Yang, Z. Liu, and F. Cheng, “An interactive co-evolutionary framework for multi-objective critical node detection on large-scale complex networks,” IEEE Trans. Netw. Sci. Eng., vol. 10, no. 3, pp. 1722–1735, May-Jun. 2023. doi: 10.1109/TNSE.2023.3234152
|
| [10] |
R. Liu, J. Liu, Y. Li, and J. Liu, “A random dynamic grouping based weight optimization framework for large-scale multi-objective optimization problems,” Swarm Evol. Comput., vol. 55, p. 100684, Jun. 2020. doi: 10.1016/j.swevo.2020.100684
|
| [11] |
C. He, L. Li, Y. Tian, X. Zhang, R. Cheng, Y. Jin, and X. Yao, “Accelerating large-scale multiobjective optimization via problem reformulation,” IEEE Trans. Evol. Comput., vol. 23, no. 6, pp. 949–961, Dec. 2019. doi: 10.1109/TEVC.2019.2896002
|
| [12] |
Y. Tian, C. Lu, X. Zhang, F. Cheng, and Y. Jin, “A pattern mining-based evolutionary algorithm for large-scale sparse multiobjective optimization problems,” IEEE Trans. Cybern., vol. 52, no. 7, pp. 6784–6797, Jul. 2022. doi: 10.1109/TCYB.2020.3041325
|
| [13] |
Y. Tian, Y. Feng, X. Zhang, and C. Sun, “A fast clustering based evolutionary algorithm for super-large-scale sparse multi-objective optimization,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 1048–1063, Apr. 2023. doi: 10.1109/JAS.2022.105437
|
| [14] |
Q. Lin, J. Li, S. Liu, L. Ma, J. Li, and J. Chen, “An adaptive two-stage evolutionary algorithm for large-scale continuous multi-objective optimization,” Swarm Evol. Comput., vol. 77, p. 101235, Mar. 2023. doi: 10.1016/j.swevo.2023.101235
|
| [15] |
S. Liu, J. Li, Q. Lin, Y. Tian, and K. C. Tan, “Learning to accelerate evolutionary search for large-scale multiobjective optimization,” IEEE Trans. Evol. Comput., vol. 27, no. 1, pp. 67–81, Feb. 2023. doi: 10.1109/TEVC.2022.3155593
|
| [16] |
Y. Tian, C. Lu, X. Zhang, K. C. Tan, and Y. Jin, “Solving large-scale multiobjective optimization problems with sparse optimal solutions via unsupervised neural networks,” IEEE Trans. Cybern., vol. 51, no. 6, pp. 3115–3128, Jun. 2021. doi: 10.1109/TCYB.2020.2979930
|
| [17] |
L. Chen, P. Cheng, Y. Wang, and W. Ye, “Combining multi-objective evolutionary approach and machine learning to optimize PCI configuration in large-scale LTE networks,” in Proc. 5th Int. Conf. Communication Engineering and Technology, Shanghai, China, 2022, pp. 32−39.
|
| [18] |
Y. Tian, X. Zheng, X. Zhang, and Y. Jin, “Efficient large-scale multiobjective optimization based on a competitive swarm optimizer,” IEEE Trans. Cybern., vol. 50, no. 8, pp. 3696–3708, Aug. 2020. doi: 10.1109/TCYB.2019.2906383
|
| [19] |
C. He, R. Cheng, and D. Yazdani, “Adaptive offspring generation for evolutionary large-scale multiobjective Optimization,” IEEE Trans. Syst. Man Cybern. Syst., vol. 52, no. 2, pp. 786–798, Feb. 2022. doi: 10.1109/TSMC.2020.3003926
|
| [20] |
A. Gupta, Y.-S. Ong, and L. Feng, “Insights on transfer optimization: Because experience is the best teacher,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 2, no. 1, pp. 51–64, Feb. 2018. doi: 10.1109/TETCI.2017.2769104
|
| [21] |
E. Osaba, J. Del Ser, A. D. Martinez, and A. Hussain, “Evolutionary multitask optimization: A methodological overview, challenges, and future research directions,” Cognit. Comput., vol. 14, no. 3, pp. 927–954, Apr. 2022. doi: 10.1007/s12559-022-10012-8
|
| [22] |
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,” Commun. ACM, vol. 63, no. 11, pp. 139–144, Oct. 2020. doi: 10.1145/3422622
|
| [23] |
G. Li, Q. Lin, and W. Gao, “Multifactorial optimization via explicit multipopulation evolutionary framework,” Inf. Sci., vol. 512, pp. 1555–1570, Feb. 2020. doi: 10.1016/j.ins.2019.10.066
|
| [24] |
J. Zhong, L. Feng, W. Cai, and Y.-S. Ong, “Multifactorial genetic programming for symbolic regression problems,” IEEE Trans. Syst. Man Cybern. Syst., vol. 50, no. 11, pp. 4492–4505, Nov. 2020. doi: 10.1109/TSMC.2018.2853719
|
| [25] |
Q. Ye, W. Wang, G. Li, and Z. Wang, “Dynamic-multi-task-assisted evolutionary algorithm for constrained multi-objective optimization,” Swarm Evol. Comput., vol. 90, p. 101683, Oct. 2024. doi: 10.1016/j.swevo.2024.101683
|
| [26] |
Y. Chen, J. Zhong, L. Feng, and J. Zhang, “An adaptive archive-based evolutionary framework for many-task optimization,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 4, no. 3, pp. 369–384, Jun. 2020. doi: 10.1109/TETCI.2019.2916051
|
| [27] |
K. Qiao, J. Liang, Z. Liu, K. Yu, C. Yue, and B. Qu, “Evolutionary multitasking with global and local auxiliary tasks for constrained multi-objective optimization,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 10, pp. 1951–1964, Oct. 2023. doi: 10.1109/JAS.2023.123336
|
| [28] |
K. Qiao, J. Liang, K. Yu, X. Ban, C. Yue, B. Qu, and P. N. Suganthan, “Constraints separation based evolutionary multitasking for constrained multi-objective optimization problems,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 8, pp. 1819–1835, Aug. 2024. doi: 10.1109/JAS.2024.124545
|
| [29] |
Z. Liang, H. Dong, C. Liu, W. Liang, and Z. Zhu, “Evolutionary multitasking for multiobjective optimization with subspace alignment and adaptive differential evolution,” IEEE Trans. Cybern., vol. 52, no. 4, pp. 2096–2109, Apr. 2022. doi: 10.1109/TCYB.2020.2980888
|
| [30] |
X. Wang, Z. Dong, L. Tang, and Q. Zhang, “Multiobjective multitask optimization-neighborhood as a bridge for knowledge transfer,” IEEE Trans. Evol. Comput., vol. 27, no. 1, pp. 155–169, Feb. 2023. doi: 10.1109/TEVC.2022.3154416
|
| [31] |
Y. Feng, L. Feng, S. Liu, S. Kwong, and K. C. Tan, “Towards multi-objective high-dimensional feature selection via evolutionary multitasking,” Swarm Evol. Comput., vol. 89, p. 101618, Aug. 2024. doi: 10.1016/j.swevo.2024.101618
|
| [32] |
S. Huang, J. Zhong, and W.-J. Yu, “Surrogate-assisted evolutionary framework with adaptive knowledge transfer for multi-task optimization,” IEEE Trans. Emerg. Top. Comput., vol. 9, no. 4, pp. 1930–1944, Oct.-Dec. 2021. doi: 10.1109/TETC.2019.2945775
|
| [33] |
W.-J. Mai, W.-L. Li, and J.-H. Zhong, “Evolutionary many-task optimization framework based on machine learning,” Chin. J. Comput., vol. 47, no. 1, pp. 29–51, Jan. 2024.
|
| [34] |
Z. Liang, X. Xu, L. Liu, Y. Tu, and Z. Zhu, “Evolutionary many-task optimization based on multisource knowledge transfer,” IEEE Trans. Evol. Comput., vol. 26, no. 2, pp. 319–333, Apr. 2022. doi: 10.1109/TEVC.2021.3101697
|
| [35] |
S. Li, W. Gong, L. Wang, and Q. Gu, “Evolutionary multitasking via reinforcement learning,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 8, no. 1, pp. 762–775, Feb. 2024. doi: 10.1109/TETCI.2023.3281876
|
| [36] |
F. Cheng, C. Zhang, and X. Zhang, “An evolutionary multitasking method for multiclass classification [research frontier],” IEEE Comput. Intell. Mag., vol. 17, no. 4, pp. 54–69, Nov. 2022. doi: 10.1109/MCI.2022.3199625
|
| [37] |
Y. Li, W. Gong, and Q. Gu, “Transfer search directions among decomposed subtasks for evolutionary multitasking in multiobjective optimization,” in Proc. Genetic and Evolutionary Computation Conf., Melbourne, Australia, 2024, pp. 557−565.
|
| [38] |
Y. Li and W. Gong, “Multiobjective multitask optimization with multiple knowledge types and transfer adaptation,” IEEE Trans. Evol. Comput., vol. 29, no. 1, pp. 205–216, Feb. 2025. doi: 10.1109/TEVC.2024.3353319
|
| [39] |
S. Kullback and R. A. Leibler, “On information and sufficiency,” Ann. Math. Stat., vol. 22, no. 1, pp. 79–86, Mar. 1951. doi: 10.1214/aoms/1177729694
|
| [40] |
A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola, “A kernel two-sample test,” J. Mach. Learn. Res., vol. 13, no. 1, pp. 723–773, Mar. 2012.
|
| [41] |
S. Kim, S.-J. Min, S.-G. Jung, and H.-Y. Yu, “Multi-objective optimization and inverse design of complementary field-effect transistor using combined approach of machine learning and non-dominated sorting genetic algorithms for next-generation semiconductor devices,” Eng. Appl. Artif. Intell., vol. 137, p. 109064, Nov. 2024. doi: 10.1016/j.engappai.2024.109064
|
| [42] |
R. Cheng, Y. Jin, M. Olhofer, and B. Sendhoff, “Test problems for large-scale multiobjective and many-objective optimization,” IEEE Trans. Cybern., vol. 47, no. 12, pp. 4108–4121, Dec. 2017. doi: 10.1109/TCYB.2016.2600577
|
| [43] |
S. Liu, Q. Lin, L. Feng, K.-C. Wong, and K. C. Tan, “Evolutionary multitasking for large-scale multiobjective optimization,” IEEE Trans. Evol. Comput., vol. 27, no. 4, pp. 863–877, Aug. 2023. doi: 10.1109/TEVC.2022.3166482
|
| [44] |
S. Jiang, Y.-S. Ong, J. Zhang, and L. Feng, “Consistencies and contradictions of performance metrics in multiobjective optimization,” IEEE Trans. Cybern., vol. 44, no. 12, pp. 2391–2404, Dec. 2014. doi: 10.1109/TCYB.2014.2307319
|
| [45] |
A. Gupta, Y.-S. Ong, L. Feng, and K. C. Tan, “Multiobjective multifactorial optimization in evolutionary multitasking,” IEEE Trans. Cybern., vol. 47, no. 7, pp. 1652–1665, Jul. 2017. doi: 10.1109/TCYB.2016.2554622
|
| [46] |
Y. Tian, R. Cheng, X. Zhang, and Y. Jin, “PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [educational forum],” IEEE Comput. Intell. Mag., vol. 12, no. 4, pp. 73–87, Nov. 2017. doi: 10.1109/MCI.2017.2742868
|
| [47] |
C. He, R. Cheng, L. Li, K. C. Tan, and Y. C. Jin, “Large-scale multiobjective optimization via reformulated decision variable analysis,” IEEE Trans. Evol. Comput., vol. 28, no. 1, pp. 47–61, Feb. 2024. doi: 10.1109/TEVC.2022.3213006
|
| [48] |
L. R. C. Farias and A. F. R. Araújo, “An inverse modeling constrained multi-objective evolutionary algorithm based on decomposition,” in Proc. IEEE Int. Conf. Systems, Man, and Cybernetics, Kuching, Malaysia, 2024, pp. 3727−3732.
|