A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 12 Issue 12
Dec.  2025

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 19.2, Top 1 (SCI Q1)
    CiteScore: 28.2, Top 1% (Q1)
    Google Scholar h5-index: 95, TOP 5
Turn off MathJax
Article Contents
W. Mai, Z. Tang, W. Liu, J. Zhong, and H. Jin, “Evolutionary multitasking with multiple knowledge representations and elite vector guidance for solving large-scale multi-objective optimization problems,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 12, pp. 2553–2571, Dec. 2025. doi: 10.1109/JAS.2025.125483
Citation: W. Mai, Z. Tang, W. Liu, J. Zhong, and H. Jin, “Evolutionary multitasking with multiple knowledge representations and elite vector guidance for solving large-scale multi-objective optimization problems,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 12, pp. 2553–2571, Dec. 2025. doi: 10.1109/JAS.2025.125483

Evolutionary Multitasking With Multiple Knowledge Representations and Elite Vector Guidance for Solving Large-Scale Multi-Objective Optimization Problems

doi: 10.1109/JAS.2025.125483
Funds:  This work was supported in part by the National Natural Science Foundation of China (62506083, 62476096) and Guangdong Provincial Construction Project of Teaching Quality and Teaching Reform Engineering in Undergraduate Universities ([2024] No. 30)
More Information
  • Evolutionary multitasking optimization (EMTO) can obtain beneficial knowledge for the target task from the auxiliary task to improve its performance, which has received extensive attention in scientific research and engineering problems. Nevertheless, faced with the widespread large-scale multi-objective optimization problems (LSMOPs), the existing EMTO literature barely involves the research of LSMOPs. More importantly, these EMTO algorithms often get trapped in local optima when dealing with LSMOPs, resulting in a slow convergence speed, which is worthy of our attention. To this end, this paper proposes an EMTO algorithm dedicated to solving LSMOPs. On the one hand, given the intricate nature of LSMOPs, we propose a knowledge domination-based knowledge transfer mechanism that can flexibly transfer knowledge from multiple knowledge representations, i.e., the information distribution and distribution distance of the task population. On the other hand, we design an elite vector-guided search strategy. Specifically, the generative adversarial network (GAN) model should first be trained within the divided populations. Then, the well-trained model is used to generate a high-quality individual for the target individual. After that, the high-quality individual is combined with the top-performing individual in the current population to find the elite vector corresponding to the target individual. Finally, the elite vector is applied to guide the target individual to accelerate convergence towards the global optimum in the high-dimensional decision space. We conduct comprehensive experimental investigations on two artificial LSMOPs suites and six real-world LSMOPs to validate the efficiency and robustness of the proposed algorithm, through comparative analysis with state-of-the-art peer algorithms.

     

  • loading
  • [1]
    J. Ou, X. Liu, L. Xing, J. Lv, Y. Hu, J. Zheng, J. Zou, and M. Li, “Solving many-objective delivery and pickup vehicle routing problem with time windows with a constrained evolutionary optimization algorithm,” Expert Syst. Appl., vol. 255, p. 124712, Dec. 2024. doi: 10.1016/j.eswa.2024.124712
    [2]
    A. C. Ramesh and G. Srivatsun, “Evolutionary Algorithm for overlapping community detection using a merged maximal cliques representation scheme,” Appl. Soft Comput., vol. 112, p. 107746, Nov. 2021. doi: 10.1016/j.asoc.2021.107746
    [3]
    F. Wang, H. Zhang, M.-C. Han, and L.-N. Xing, “Co-evolution based mixed-variable multi-objective particle swarm optimization for UAV cooperative multi-task allocation problem,” Chin. J. Comput., vol. 44, no. 10, pp. 1967–1983, Oct. 2021.
    [4]
    Y. Tian, L. Si, X. Zhang, R. Cheng, C. He, K. C. Tan, and Y. Jin, “Evolutionary large-scale multi-objective optimization: A Survey,” ACM Comput. Surv., vol. 54, no. 8, p. 174, Oct. 2021.
    [5]
    T. Weise, R. Chiong, and K. Tang, “Evolutionary optimization: Pitfalls and booby traps,” J. Comput. Sci. Technol., vol. 27, no. 5, pp. 907–936, Nov. 2012. doi: 10.1007/s11390-012-1274-4
    [6]
    W.-J. Hong, P. Yang and K. Tang, “Evolutionary computation for large-scale multi-objective optimization: A decade of progresses,” Int. J. Autom. Comput., vol. 18, no. 2, pp. 155–169, Jan. 2021. doi: 10.1007/s11633-020-1253-0
    [7]
    X. Zhang, Y. Tian, R. Cheng, and Y. Jin, “A decision variable clustering-based evolutionary algorithm for large-scale many-objective optimization,” IEEE Trans. Evol. Comput., vol. 22, no. 1, pp. 97–112, Feb. 2018. doi: 10.1109/TEVC.2016.2600642
    [8]
    S. Liu, Q. Lin, Y. Tian, and K. C. Tan, “A variable importance-based differential evolution for large-scale multiobjective optimization,” IEEE Trans. Cybern., vol. 52, no. 12, pp. 13048–13062, Dec. 2022. doi: 10.1109/TCYB.2021.3098186
    [9]
    L. Zhang, H. Zhang, H. Yang, Z. Liu, and F. Cheng, “An interactive co-evolutionary framework for multi-objective critical node detection on large-scale complex networks,” IEEE Trans. Netw. Sci. Eng., vol. 10, no. 3, pp. 1722–1735, May-Jun. 2023. doi: 10.1109/TNSE.2023.3234152
    [10]
    R. Liu, J. Liu, Y. Li, and J. Liu, “A random dynamic grouping based weight optimization framework for large-scale multi-objective optimization problems,” Swarm Evol. Comput., vol. 55, p. 100684, Jun. 2020. doi: 10.1016/j.swevo.2020.100684
    [11]
    C. He, L. Li, Y. Tian, X. Zhang, R. Cheng, Y. Jin, and X. Yao, “Accelerating large-scale multiobjective optimization via problem reformulation,” IEEE Trans. Evol. Comput., vol. 23, no. 6, pp. 949–961, Dec. 2019. doi: 10.1109/TEVC.2019.2896002
    [12]
    Y. Tian, C. Lu, X. Zhang, F. Cheng, and Y. Jin, “A pattern mining-based evolutionary algorithm for large-scale sparse multiobjective optimization problems,” IEEE Trans. Cybern., vol. 52, no. 7, pp. 6784–6797, Jul. 2022. doi: 10.1109/TCYB.2020.3041325
    [13]
    Y. Tian, Y. Feng, X. Zhang, and C. Sun, “A fast clustering based evolutionary algorithm for super-large-scale sparse multi-objective optimization,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 1048–1063, Apr. 2023. doi: 10.1109/JAS.2022.105437
    [14]
    Q. Lin, J. Li, S. Liu, L. Ma, J. Li, and J. Chen, “An adaptive two-stage evolutionary algorithm for large-scale continuous multi-objective optimization,” Swarm Evol. Comput., vol. 77, p. 101235, Mar. 2023. doi: 10.1016/j.swevo.2023.101235
    [15]
    S. Liu, J. Li, Q. Lin, Y. Tian, and K. C. Tan, “Learning to accelerate evolutionary search for large-scale multiobjective optimization,” IEEE Trans. Evol. Comput., vol. 27, no. 1, pp. 67–81, Feb. 2023. doi: 10.1109/TEVC.2022.3155593
    [16]
    Y. Tian, C. Lu, X. Zhang, K. C. Tan, and Y. Jin, “Solving large-scale multiobjective optimization problems with sparse optimal solutions via unsupervised neural networks,” IEEE Trans. Cybern., vol. 51, no. 6, pp. 3115–3128, Jun. 2021. doi: 10.1109/TCYB.2020.2979930
    [17]
    L. Chen, P. Cheng, Y. Wang, and W. Ye, “Combining multi-objective evolutionary approach and machine learning to optimize PCI configuration in large-scale LTE networks,” in Proc. 5th Int. Conf. Communication Engineering and Technology, Shanghai, China, 2022, pp. 32−39.
    [18]
    Y. Tian, X. Zheng, X. Zhang, and Y. Jin, “Efficient large-scale multiobjective optimization based on a competitive swarm optimizer,” IEEE Trans. Cybern., vol. 50, no. 8, pp. 3696–3708, Aug. 2020. doi: 10.1109/TCYB.2019.2906383
    [19]
    C. He, R. Cheng, and D. Yazdani, “Adaptive offspring generation for evolutionary large-scale multiobjective Optimization,” IEEE Trans. Syst. Man Cybern. Syst., vol. 52, no. 2, pp. 786–798, Feb. 2022. doi: 10.1109/TSMC.2020.3003926
    [20]
    A. Gupta, Y.-S. Ong, and L. Feng, “Insights on transfer optimization: Because experience is the best teacher,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 2, no. 1, pp. 51–64, Feb. 2018. doi: 10.1109/TETCI.2017.2769104
    [21]
    E. Osaba, J. Del Ser, A. D. Martinez, and A. Hussain, “Evolutionary multitask optimization: A methodological overview, challenges, and future research directions,” Cognit. Comput., vol. 14, no. 3, pp. 927–954, Apr. 2022. doi: 10.1007/s12559-022-10012-8
    [22]
    I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,” Commun. ACM, vol. 63, no. 11, pp. 139–144, Oct. 2020. doi: 10.1145/3422622
    [23]
    G. Li, Q. Lin, and W. Gao, “Multifactorial optimization via explicit multipopulation evolutionary framework,” Inf. Sci., vol. 512, pp. 1555–1570, Feb. 2020. doi: 10.1016/j.ins.2019.10.066
    [24]
    J. Zhong, L. Feng, W. Cai, and Y.-S. Ong, “Multifactorial genetic programming for symbolic regression problems,” IEEE Trans. Syst. Man Cybern. Syst., vol. 50, no. 11, pp. 4492–4505, Nov. 2020. doi: 10.1109/TSMC.2018.2853719
    [25]
    Q. Ye, W. Wang, G. Li, and Z. Wang, “Dynamic-multi-task-assisted evolutionary algorithm for constrained multi-objective optimization,” Swarm Evol. Comput., vol. 90, p. 101683, Oct. 2024. doi: 10.1016/j.swevo.2024.101683
    [26]
    Y. Chen, J. Zhong, L. Feng, and J. Zhang, “An adaptive archive-based evolutionary framework for many-task optimization,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 4, no. 3, pp. 369–384, Jun. 2020. doi: 10.1109/TETCI.2019.2916051
    [27]
    K. Qiao, J. Liang, Z. Liu, K. Yu, C. Yue, and B. Qu, “Evolutionary multitasking with global and local auxiliary tasks for constrained multi-objective optimization,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 10, pp. 1951–1964, Oct. 2023. doi: 10.1109/JAS.2023.123336
    [28]
    K. Qiao, J. Liang, K. Yu, X. Ban, C. Yue, B. Qu, and P. N. Suganthan, “Constraints separation based evolutionary multitasking for constrained multi-objective optimization problems,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 8, pp. 1819–1835, Aug. 2024. doi: 10.1109/JAS.2024.124545
    [29]
    Z. Liang, H. Dong, C. Liu, W. Liang, and Z. Zhu, “Evolutionary multitasking for multiobjective optimization with subspace alignment and adaptive differential evolution,” IEEE Trans. Cybern., vol. 52, no. 4, pp. 2096–2109, Apr. 2022. doi: 10.1109/TCYB.2020.2980888
    [30]
    X. Wang, Z. Dong, L. Tang, and Q. Zhang, “Multiobjective multitask optimization-neighborhood as a bridge for knowledge transfer,” IEEE Trans. Evol. Comput., vol. 27, no. 1, pp. 155–169, Feb. 2023. doi: 10.1109/TEVC.2022.3154416
    [31]
    Y. Feng, L. Feng, S. Liu, S. Kwong, and K. C. Tan, “Towards multi-objective high-dimensional feature selection via evolutionary multitasking,” Swarm Evol. Comput., vol. 89, p. 101618, Aug. 2024. doi: 10.1016/j.swevo.2024.101618
    [32]
    S. Huang, J. Zhong, and W.-J. Yu, “Surrogate-assisted evolutionary framework with adaptive knowledge transfer for multi-task optimization,” IEEE Trans. Emerg. Top. Comput., vol. 9, no. 4, pp. 1930–1944, Oct.-Dec. 2021. doi: 10.1109/TETC.2019.2945775
    [33]
    W.-J. Mai, W.-L. Li, and J.-H. Zhong, “Evolutionary many-task optimization framework based on machine learning,” Chin. J. Comput., vol. 47, no. 1, pp. 29–51, Jan. 2024.
    [34]
    Z. Liang, X. Xu, L. Liu, Y. Tu, and Z. Zhu, “Evolutionary many-task optimization based on multisource knowledge transfer,” IEEE Trans. Evol. Comput., vol. 26, no. 2, pp. 319–333, Apr. 2022. doi: 10.1109/TEVC.2021.3101697
    [35]
    S. Li, W. Gong, L. Wang, and Q. Gu, “Evolutionary multitasking via reinforcement learning,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 8, no. 1, pp. 762–775, Feb. 2024. doi: 10.1109/TETCI.2023.3281876
    [36]
    F. Cheng, C. Zhang, and X. Zhang, “An evolutionary multitasking method for multiclass classification [research frontier],” IEEE Comput. Intell. Mag., vol. 17, no. 4, pp. 54–69, Nov. 2022. doi: 10.1109/MCI.2022.3199625
    [37]
    Y. Li, W. Gong, and Q. Gu, “Transfer search directions among decomposed subtasks for evolutionary multitasking in multiobjective optimization,” in Proc. Genetic and Evolutionary Computation Conf., Melbourne, Australia, 2024, pp. 557−565.
    [38]
    Y. Li and W. Gong, “Multiobjective multitask optimization with multiple knowledge types and transfer adaptation,” IEEE Trans. Evol. Comput., vol. 29, no. 1, pp. 205–216, Feb. 2025. doi: 10.1109/TEVC.2024.3353319
    [39]
    S. Kullback and R. A. Leibler, “On information and sufficiency,” Ann. Math. Stat., vol. 22, no. 1, pp. 79–86, Mar. 1951. doi: 10.1214/aoms/1177729694
    [40]
    A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola, “A kernel two-sample test,” J. Mach. Learn. Res., vol. 13, no. 1, pp. 723–773, Mar. 2012.
    [41]
    S. Kim, S.-J. Min, S.-G. Jung, and H.-Y. Yu, “Multi-objective optimization and inverse design of complementary field-effect transistor using combined approach of machine learning and non-dominated sorting genetic algorithms for next-generation semiconductor devices,” Eng. Appl. Artif. Intell., vol. 137, p. 109064, Nov. 2024. doi: 10.1016/j.engappai.2024.109064
    [42]
    R. Cheng, Y. Jin, M. Olhofer, and B. Sendhoff, “Test problems for large-scale multiobjective and many-objective optimization,” IEEE Trans. Cybern., vol. 47, no. 12, pp. 4108–4121, Dec. 2017. doi: 10.1109/TCYB.2016.2600577
    [43]
    S. Liu, Q. Lin, L. Feng, K.-C. Wong, and K. C. Tan, “Evolutionary multitasking for large-scale multiobjective optimization,” IEEE Trans. Evol. Comput., vol. 27, no. 4, pp. 863–877, Aug. 2023. doi: 10.1109/TEVC.2022.3166482
    [44]
    S. Jiang, Y.-S. Ong, J. Zhang, and L. Feng, “Consistencies and contradictions of performance metrics in multiobjective optimization,” IEEE Trans. Cybern., vol. 44, no. 12, pp. 2391–2404, Dec. 2014. doi: 10.1109/TCYB.2014.2307319
    [45]
    A. Gupta, Y.-S. Ong, L. Feng, and K. C. Tan, “Multiobjective multifactorial optimization in evolutionary multitasking,” IEEE Trans. Cybern., vol. 47, no. 7, pp. 1652–1665, Jul. 2017. doi: 10.1109/TCYB.2016.2554622
    [46]
    Y. Tian, R. Cheng, X. Zhang, and Y. Jin, “PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [educational forum],” IEEE Comput. Intell. Mag., vol. 12, no. 4, pp. 73–87, Nov. 2017. doi: 10.1109/MCI.2017.2742868
    [47]
    C. He, R. Cheng, L. Li, K. C. Tan, and Y. C. Jin, “Large-scale multiobjective optimization via reformulated decision variable analysis,” IEEE Trans. Evol. Comput., vol. 28, no. 1, pp. 47–61, Feb. 2024. doi: 10.1109/TEVC.2022.3213006
    [48]
    L. R. C. Farias and A. F. R. Araújo, “An inverse modeling constrained multi-objective evolutionary algorithm based on decomposition,” in Proc. IEEE Int. Conf. Systems, Man, and Cybernetics, Kuching, Malaysia, 2024, pp. 3727−3732.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(7)

    Article Metrics

    Article views (9) PDF downloads(1) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return