Volume 13
Issue 1
IEEE/CAA Journal of Automatica Sinica
| Citation: | T. Chen, K. Du, and Z. Wu, “Indefinite linear-quadratic mean-field game of regime-switching system,” IEEE/CAA J. Autom. Sinica, vol. 13, no. 1, pp. 83–97, Jan. 2026. doi: 10.1109/JAS.2025.125456 |
| [1] |
G. E. Espinosa and N. Touzi, “Optimal investment under relative performance concerns,” Math. Financ., vol. 25, no. 2, pp. 221–257, 2015. doi: 10.1111/mafi.12034
|
| [2] |
D. Lacker and T. Zariphopoulou, “Mean field and n-agent games for optimal investment under relative performance criteria,” Math. Financ., vol. 29, no. 4, pp. 1003–1038, 2019. doi: 10.1111/mafi.12206
|
| [3] |
J. M. Lasry and P. L. Lions, “Mean field games,” Jap. J. Math., vol. 2, no. 1, pp. 229–260, 2007. doi: 10.1007/s11537-007-0657-8
|
| [4] |
M. Huang, R. P. Malhamé, and P. E. Caines, “Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle,” Commun. Inf. Syst., vol. 6, no. 3, pp. 221–252, 2006. doi: 10.4310/CIS.2006.v6.n3.a5
|
| [5] |
R. Carmona and F. Delarue, Probabilistic Theory of Mean Field Games With Applications I−II. Springer Nature, 2018.
|
| [6] |
D. A. Gomes, E. A. Pimentel, and V. Voskanyan, Regularity Theory for Mean-Field Game Systems. New York, USA: Springer, 2016.
|
| [7] |
Y. Hu, J. Huang, and T. Nie, “Linear-quadratic-gaussian mixed mean-field games with heterogeneous input constraints,” SIAM J. Control Optim., vol. 56, no. 4, pp. 2835–2877, 2018. doi: 10.1137/17M1151420
|
| [8] |
K. Lu and Q. Zhu, “Nonsmooth continuous-time distributed algorithms for seeking generalized Nash equilibria of noncooperative games via digraphs,” IEEE Trans. Cyber., vol. 52, no. 7, pp. 6196–6206, 2021.
|
| [9] |
M. Nourian, P. E. Caines, R. P. Malhamé, and M. Huang, “Nash, social and centralized solutions to consensus problems via mean field control theory,” IEEE Trans. Autom. Control, vol. 58, no. 3, pp. 639–653, 2012.
|
| [10] |
C. Donnelly, “Sufficient stochastic maximum principle in a regime-switching diffusion model,” Appl. Math. Optim., vol. 64, pp. 155–169, 2011. doi: 10.1007/s00245-010-9130-9
|
| [11] |
R. Tao and Z. Wu, “Maximum principle for optimal control problems of forward-backward regime-switching system and applications,” Syst. Control Lett., vol. 61, no. 9, pp. 911–917, 2012. doi: 10.1016/j.sysconle.2012.06.006
|
| [12] |
J. D. Hamilton, “A new approach to the economic analysis of nonstationary time series and the business cycle,” Econometrica, pp. 357–384, 1989.
|
| [13] |
Q. Zhang, “Stock trading: An optimal selling rule,” SIAM J. Control Optim., vol. 40, no. 1, pp. 64–87, 2001. doi: 10.1137/S0363012999356325
|
| [14] |
X. Y. Zhou and G. Yin, “Markowitz’s mean-variance portfolio selection with regime switching: A continuous-time model,” SIAM J. Control Optim., vol. 42, no. 4, pp. 1466–1482, 2003. doi: 10.1137/S0363012902405583
|
| [15] |
H. M. Markowitz and G. P. Todd, Mean-Variance Analysis in Portfolio Choice and Capital Markets. John Wiley & Sons, 2000.
|
| [16] |
X. Li, X. Y. Zhou, and A. E. B. Lim., “Dynamic mean-variance portfolio selection with no-shorting constraints,” SIAM J. Control Optim., vol. 40, no. 5, pp. 1540–1555, 2002. doi: 10.1137/S0363012900378504
|
| [17] |
A. E. B. Lim and X. Y. Zhou, “Mean-variance portfolio selection with random parameters in a complete market,” Math. Oper. Res., vol. 27, no. 1, pp. 101–120, 2002. doi: 10.1287/moor.27.1.101.337
|
| [18] |
S. Chen, X. Li, and X. Y. Zhou, “Stochastic linear quadratic regulators with indefinite control weight costs,” SIAM J. Control Optim., vol. 36, no. 5, pp. 1685–1702, 1998. doi: 10.1137/S0363012996310478
|
| [19] |
S. Chen and J. Yong, “Stochastic linear quadratic optimal control problems,” Appl. Math. Optim., vol. 43, no. 1, pp. 21–45, 2001. doi: 10.1007/s002450010016
|
| [20] |
S. Chen and X. Y. Zhou, “Stochastic linear quadratic regulators with indefinite control weight costs. II,” SIAM J. Control Optim., vol. 39, no. 4, pp. 1065–1081, 2000. doi: 10.1137/S0363012998346578
|
| [21] |
X. Zhang, X. Li, and J. Xiong, “Open-loop and closed-loop solvabilities for stochastic linear quadratic optimal control problems of Markovian regime switching system,” ESAIM-Control Optim. Calc. Var., vol. 27, pp. 1–35, 2021. doi: 10.1051/cocv/2020076
|
| [22] |
X. Li and X. Y. Zhou, “Indefinite stochastic LQ controls with Markovian jumps in a finite time horizon,” Commun. Inf. Syst., vol. 2, no. 3, pp. 265–282, 2002. doi: 10.4310/CIS.2002.v2.n3.a4
|
| [23] |
N. Li, X. Li, and Z. Yu, “Indefinite mean-field type linear–quadratic stochastic optimal control problems,” Automatica, vol. 122, p. 109267, 2020. doi: 10.1016/j.automatica.2020.109267
|
| [24] |
Z. Yu, “Equivalent cost functionals and stochastic linear quadratic optimal control problems,” ESAIM-Control Optim. Calc. Var., vol. 19, no. 1, pp. 78–90, 2013. doi: 10.1051/cocv/2011206
|
| [25] |
B. C. Wang and J. F. Zhang, “Mean field games for large-population multiagent systems with Markov jump parameters,” SIAM J. Control Optim., vol. 50, no. 4, pp. 2308–2334, 2012. doi: 10.1137/100800324
|
| [26] |
B. C. Wang and J. F. Zhang, “Social optima in mean field linear-quadratic-Gaussian models with Markov jump parameters,” SIAM J. Control Optim., vol. 55, no. 1, pp. 429–456, 2017. doi: 10.1137/15M104178X
|
| [27] |
R. Xu and F. Zhang, “ϵ-Nash mean-field games for general linear-quadratic systems with applications,” Automatica, vol. 114, p. 108835, 2020. doi: 10.1016/j.automatica.2020.108835
|
| [28] |
B. C. Wang and H. Zhang, “Indefinite linear quadratic mean field social control problems with multiplicative noise,” IEEE Trans. Autom. Control, vol. 66, no. 11, pp. 5221–5236, 2020.
|
| [29] |
J. Sun, X. Li, and J. Yong, “Open-loop and closed-loop solvabilities for stochastic linear quadratic optimal control problems,” SIAM J. Control Optim., vol. 54, no. 5, pp. 2274–2308, 2016. doi: 10.1137/15M103532X
|
| [30] |
M. Huang, P. E. Caines, and R. P. Malhamé, “Large-population cost-coupled LQG problems with nonuniform agents: individual-mass behavior and decentralized ε-Nash equilibria,” IEEE Trans. Autom. Control, vol. 52, no. 9, pp. 1560–1571, 2007. doi: 10.1109/TAC.2007.904450
|
| [31] |
X. Zhang, Z. Sun, and J. Xiong, “A general stochastic maximum principle for a Markov regime switching jump-diffusion model of mean-field type,” SIAM J. Control Optim., vol. 56, no. 4, pp. 2563–2592, 2018. doi: 10.1137/17M112395X
|
| [32] |
Y. Hu, J. Huang, and X. Li, “Linear quadratic mean field game with control input constraint,” ESAIM-Control Optim. Calc. Var., vol. 24, no. 2, pp. 901–919, 2018. doi: 10.1051/cocv/2017038
|
| [33] |
S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities in System and Control Theory. Society for Industrial and Applied Mathematics, 1994.
|
| [34] |
S. Peng and Z. Wu, “Fully coupled forward-backward stochastic differential equations and applications to optimal control,” SIAM J. Control Optim., vol. 37, no. 3, pp. 825–843, 1999. doi: 10.1137/S0363012996313549
|
| [35] |
J. Ma and J. Yong, Forward-Backward Stochastic Differential Equations and Their Applications. Berlin, Germany: Springer, 1999.
|
| [36] |
H. Abou-Kandil, G. Freiling, V. Ionescu, and G. Jank, Matrix Riccati Equations in Control and Systems Theory. Cham, Switzerland: Springer, 2003.
|
| [37] |
J. Huang, S. Wang, and Z. Wu, “Robust Stackelberg differential game with model uncertainty,” IEEE Trans. Autom. Control, vol. 67, no. 7, pp. 3363–3380, 2022. doi: 10.1109/TAC.2021.3097549
|
| [38] |
J. Sun and J. Yong, “Linear quadratic stochastic differential games: Open-loop and closed-loop saddle points,” SIAM J. Control Optim., vol. 52, no. 6, pp. 4082–4121, 2014. doi: 10.1137/140953642
|