A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 13 Issue 1
Jan.  2026

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 19.2, Top 1 (SCI Q1)
    CiteScore: 28.2, Top 1% (Q1)
    Google Scholar h5-index: 95, TOP 5
Turn off MathJax
Article Contents
T. Chen, K. Du, and Z. Wu, “Indefinite linear-quadratic mean-field game of regime-switching system,” IEEE/CAA J. Autom. Sinica, vol. 13, no. 1, pp. 83–97, Jan. 2026. doi: 10.1109/JAS.2025.125456
Citation: T. Chen, K. Du, and Z. Wu, “Indefinite linear-quadratic mean-field game of regime-switching system,” IEEE/CAA J. Autom. Sinica, vol. 13, no. 1, pp. 83–97, Jan. 2026. doi: 10.1109/JAS.2025.125456

Indefinite Linear-Quadratic Mean-Field Game of Regime-Switching System

doi: 10.1109/JAS.2025.125456
Funds:  This work was supported by the National Key Research and Development Program of China (2023YFA1009200), the National Natural Science Foundation of China (12401583, 12571482, 12521001), the Taishan Scholars Climbing Program of Shandong (TSPD20210302), the Basic Research Program of Jiangsu (BK20240416), and the General Program of Philosophy and Social Science Research (PSSR) of Shandong Higher Education Institutions (2024ZSMS007)
More Information
  • This paper studies an indefinite mean-field game with Markov jump parameters, where all agents’ diffusion terms depend on control variables and both state and control average terms ($ x^{(N)}_{\cdot} $, $ u^{(N)}_{\cdot} $) are considered. One notable aspect is the relaxation of the assumption regarding the positivity or non-negativity of weight matrices within costs, allowing for zero or even negative values. By virtue of mean-field methods and decomposition techniques, we have derived decentralized strategies presented by Hamiltonian systems and a new type of consistency condition system. These systems consist of fully coupled regime-switching forward-backward stochastic differential equations that do not conform to the Monotonicity condition. The well-posedness of these strategies is established by employing a relaxed compensator method with an easily verifiable Condition (RC) and the decomposition technique. Furthermore, we demonstrate that the resulting decentralized strategies achieve an ϵ-Nash equilibrium in the indefinite case without any assumptions on admissible control sets using novel estimates of the disturbed state and cost function. Finally, our theoretical results are applied to resolve a class of mean-variance portfolio selection problems. We provide corresponding numerical simulation results and economic explanations.

     

  • loading
  • [1]
    G. E. Espinosa and N. Touzi, “Optimal investment under relative performance concerns,” Math. Financ., vol. 25, no. 2, pp. 221–257, 2015. doi: 10.1111/mafi.12034
    [2]
    D. Lacker and T. Zariphopoulou, “Mean field and n-agent games for optimal investment under relative performance criteria,” Math. Financ., vol. 29, no. 4, pp. 1003–1038, 2019. doi: 10.1111/mafi.12206
    [3]
    J. M. Lasry and P. L. Lions, “Mean field games,” Jap. J. Math., vol. 2, no. 1, pp. 229–260, 2007. doi: 10.1007/s11537-007-0657-8
    [4]
    M. Huang, R. P. Malhamé, and P. E. Caines, “Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle,” Commun. Inf. Syst., vol. 6, no. 3, pp. 221–252, 2006. doi: 10.4310/CIS.2006.v6.n3.a5
    [5]
    R. Carmona and F. Delarue, Probabilistic Theory of Mean Field Games With Applications I−II. Springer Nature, 2018.
    [6]
    D. A. Gomes, E. A. Pimentel, and V. Voskanyan, Regularity Theory for Mean-Field Game Systems. New York, USA: Springer, 2016.
    [7]
    Y. Hu, J. Huang, and T. Nie, “Linear-quadratic-gaussian mixed mean-field games with heterogeneous input constraints,” SIAM J. Control Optim., vol. 56, no. 4, pp. 2835–2877, 2018. doi: 10.1137/17M1151420
    [8]
    K. Lu and Q. Zhu, “Nonsmooth continuous-time distributed algorithms for seeking generalized Nash equilibria of noncooperative games via digraphs,” IEEE Trans. Cyber., vol. 52, no. 7, pp. 6196–6206, 2021.
    [9]
    M. Nourian, P. E. Caines, R. P. Malhamé, and M. Huang, “Nash, social and centralized solutions to consensus problems via mean field control theory,” IEEE Trans. Autom. Control, vol. 58, no. 3, pp. 639–653, 2012.
    [10]
    C. Donnelly, “Sufficient stochastic maximum principle in a regime-switching diffusion model,” Appl. Math. Optim., vol. 64, pp. 155–169, 2011. doi: 10.1007/s00245-010-9130-9
    [11]
    R. Tao and Z. Wu, “Maximum principle for optimal control problems of forward-backward regime-switching system and applications,” Syst. Control Lett., vol. 61, no. 9, pp. 911–917, 2012. doi: 10.1016/j.sysconle.2012.06.006
    [12]
    J. D. Hamilton, “A new approach to the economic analysis of nonstationary time series and the business cycle,” Econometrica, pp. 357–384, 1989.
    [13]
    Q. Zhang, “Stock trading: An optimal selling rule,” SIAM J. Control Optim., vol. 40, no. 1, pp. 64–87, 2001. doi: 10.1137/S0363012999356325
    [14]
    X. Y. Zhou and G. Yin, “Markowitz’s mean-variance portfolio selection with regime switching: A continuous-time model,” SIAM J. Control Optim., vol. 42, no. 4, pp. 1466–1482, 2003. doi: 10.1137/S0363012902405583
    [15]
    H. M. Markowitz and G. P. Todd, Mean-Variance Analysis in Portfolio Choice and Capital Markets. John Wiley & Sons, 2000.
    [16]
    X. Li, X. Y. Zhou, and A. E. B. Lim., “Dynamic mean-variance portfolio selection with no-shorting constraints,” SIAM J. Control Optim., vol. 40, no. 5, pp. 1540–1555, 2002. doi: 10.1137/S0363012900378504
    [17]
    A. E. B. Lim and X. Y. Zhou, “Mean-variance portfolio selection with random parameters in a complete market,” Math. Oper. Res., vol. 27, no. 1, pp. 101–120, 2002. doi: 10.1287/moor.27.1.101.337
    [18]
    S. Chen, X. Li, and X. Y. Zhou, “Stochastic linear quadratic regulators with indefinite control weight costs,” SIAM J. Control Optim., vol. 36, no. 5, pp. 1685–1702, 1998. doi: 10.1137/S0363012996310478
    [19]
    S. Chen and J. Yong, “Stochastic linear quadratic optimal control problems,” Appl. Math. Optim., vol. 43, no. 1, pp. 21–45, 2001. doi: 10.1007/s002450010016
    [20]
    S. Chen and X. Y. Zhou, “Stochastic linear quadratic regulators with indefinite control weight costs. II,” SIAM J. Control Optim., vol. 39, no. 4, pp. 1065–1081, 2000. doi: 10.1137/S0363012998346578
    [21]
    X. Zhang, X. Li, and J. Xiong, “Open-loop and closed-loop solvabilities for stochastic linear quadratic optimal control problems of Markovian regime switching system,” ESAIM-Control Optim. Calc. Var., vol. 27, pp. 1–35, 2021. doi: 10.1051/cocv/2020076
    [22]
    X. Li and X. Y. Zhou, “Indefinite stochastic LQ controls with Markovian jumps in a finite time horizon,” Commun. Inf. Syst., vol. 2, no. 3, pp. 265–282, 2002. doi: 10.4310/CIS.2002.v2.n3.a4
    [23]
    N. Li, X. Li, and Z. Yu, “Indefinite mean-field type linear–quadratic stochastic optimal control problems,” Automatica, vol. 122, p. 109267, 2020. doi: 10.1016/j.automatica.2020.109267
    [24]
    Z. Yu, “Equivalent cost functionals and stochastic linear quadratic optimal control problems,” ESAIM-Control Optim. Calc. Var., vol. 19, no. 1, pp. 78–90, 2013. doi: 10.1051/cocv/2011206
    [25]
    B. C. Wang and J. F. Zhang, “Mean field games for large-population multiagent systems with Markov jump parameters,” SIAM J. Control Optim., vol. 50, no. 4, pp. 2308–2334, 2012. doi: 10.1137/100800324
    [26]
    B. C. Wang and J. F. Zhang, “Social optima in mean field linear-quadratic-Gaussian models with Markov jump parameters,” SIAM J. Control Optim., vol. 55, no. 1, pp. 429–456, 2017. doi: 10.1137/15M104178X
    [27]
    R. Xu and F. Zhang, “ϵ-Nash mean-field games for general linear-quadratic systems with applications,” Automatica, vol. 114, p. 108835, 2020. doi: 10.1016/j.automatica.2020.108835
    [28]
    B. C. Wang and H. Zhang, “Indefinite linear quadratic mean field social control problems with multiplicative noise,” IEEE Trans. Autom. Control, vol. 66, no. 11, pp. 5221–5236, 2020.
    [29]
    J. Sun, X. Li, and J. Yong, “Open-loop and closed-loop solvabilities for stochastic linear quadratic optimal control problems,” SIAM J. Control Optim., vol. 54, no. 5, pp. 2274–2308, 2016. doi: 10.1137/15M103532X
    [30]
    M. Huang, P. E. Caines, and R. P. Malhamé, “Large-population cost-coupled LQG problems with nonuniform agents: individual-mass behavior and decentralized ε-Nash equilibria,” IEEE Trans. Autom. Control, vol. 52, no. 9, pp. 1560–1571, 2007. doi: 10.1109/TAC.2007.904450
    [31]
    X. Zhang, Z. Sun, and J. Xiong, “A general stochastic maximum principle for a Markov regime switching jump-diffusion model of mean-field type,” SIAM J. Control Optim., vol. 56, no. 4, pp. 2563–2592, 2018. doi: 10.1137/17M112395X
    [32]
    Y. Hu, J. Huang, and X. Li, “Linear quadratic mean field game with control input constraint,” ESAIM-Control Optim. Calc. Var., vol. 24, no. 2, pp. 901–919, 2018. doi: 10.1051/cocv/2017038
    [33]
    S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities in System and Control Theory. Society for Industrial and Applied Mathematics, 1994.
    [34]
    S. Peng and Z. Wu, “Fully coupled forward-backward stochastic differential equations and applications to optimal control,” SIAM J. Control Optim., vol. 37, no. 3, pp. 825–843, 1999. doi: 10.1137/S0363012996313549
    [35]
    J. Ma and J. Yong, Forward-Backward Stochastic Differential Equations and Their Applications. Berlin, Germany: Springer, 1999.
    [36]
    H. Abou-Kandil, G. Freiling, V. Ionescu, and G. Jank, Matrix Riccati Equations in Control and Systems Theory. Cham, Switzerland: Springer, 2003.
    [37]
    J. Huang, S. Wang, and Z. Wu, “Robust Stackelberg differential game with model uncertainty,” IEEE Trans. Autom. Control, vol. 67, no. 7, pp. 3363–3380, 2022. doi: 10.1109/TAC.2021.3097549
    [38]
    J. Sun and J. Yong, “Linear quadratic stochastic differential games: Open-loop and closed-loop saddle points,” SIAM J. Control Optim., vol. 52, no. 6, pp. 4082–4121, 2014. doi: 10.1137/140953642

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (47) PDF downloads(0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return