A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 12 Issue 12
Dec.  2025

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 19.2, Top 1 (SCI Q1)
    CiteScore: 28.2, Top 1% (Q1)
    Google Scholar h5-index: 95, TOP 5
Turn off MathJax
Article Contents
J. Ma, M. Tan, Y. Wang, S. Cui, Y. Cao, and S. Wang, “GelUW: A novel underwater vision-based tactile sensor for geometry perception,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 12, pp. 2499–2512, Dec. 2025. doi: 10.1109/JAS.2025.125450
Citation: J. Ma, M. Tan, Y. Wang, S. Cui, Y. Cao, and S. Wang, “GelUW: A novel underwater vision-based tactile sensor for geometry perception,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 12, pp. 2499–2512, Dec. 2025. doi: 10.1109/JAS.2025.125450

GelUW: A Novel Underwater Vision-Based Tactile Sensor for Geometry Perception

doi: 10.1109/JAS.2025.125450
Funds:  This work was supported in part by the National Key Research and Development Program of China (2023YFB4707000), the National Natural Science Foundation of China (U24A20282, U24A20281, U23A20343, U23B2038), and the Youth Innovation Promotion Association CAS (Y2022053)
More Information
  • Underwater tactile sensing technology holds considerable promise in close-range perception for underwater vehicle manipulator systems (UVMSs), providing an alternative when other methods fail. Traditional array-based underwater tactile sensors face challenges in calibration and performance, such as cross-sensitivity to water pressure and low resolution. In this study, a novel gel-based underwater visuotactile sensor, GelUW, is introduced to address these issues. This sensor achieves high three-dimensional spatial resolution (1 mm $ \times $ 1 mm in the plane, 0.7 mm in depth) in shallow water (50 m). Specifically, waterproofing and pressure-balancing mechanisms are designed to handle water pressure, with comparative experiments demonstrating the robustness of the sensor to pressure variations. A multi-color pattern-based 3D geometry perception pipeline (MCP-3D) is proposed for underwater dynamic contact scenarios to tackle marker mismatches caused by impacts, with tapping experiments revealing its self-repair capabilities and 400% improvement in stability. Furthermore, the GelUW is integrated into a UVMS for object surface perception, and pool experiments confirm its high-precision geometry perception capabilities. Finally, the UVMS equipped with GelUW successfully performs crack detection tasks at the Gezhouba Dam in Yichang, China.

     

  • loading
  • [1]
    L. Wang, L. Ma, J. Yang, and J. Wu, “Human somatosensory processing and artificial somatosensation,” Cyborg Bionic Syst., vol. 2021, p. 9843259, Jul. 2021. doi: 10.34133/2021/9843259
    [2]
    K. Uesugi, H. Mayama, and K. Morishima, “Analysis of rowing force of the water strider middle leg by direct measurement using a bio-appropriating probe and by indirect measurement using image analysis,” Cyborg Bionic Syst., vol. 2023, no. 4, p. 0061, Nov. 2023. doi: 10.34133/cbsystems.0061
    [3]
    G. G. Muscolo and G. Cannata, “A novel tactile sensor for underwater applications: Limits and perspectives,” in Proc. OCEANS 2015—Genova, Genova, Italy, 2015, pp. 1−7.
    [4]
    N. Guo, X. Han, S. Zhong, Z. Zhou, J. Lin, J. S. Dai, F. Wan, and C. Song, “Proprioceptive state estimation for amphibious tactile sensing,” IEEE Trans. Robot., vol. 40, pp. 4662–4676, 2024. doi: 10.1109/TRO.2024.3463509
    [5]
    S. Li, Z. Wang, C. Wu, X. Li, S. Luo, B. Fang, F. Sun, X. P. Zhang, and W. Ding, “When vision meets touch: A contemporary review for visuotactile sensors from the signal processing perspective,” IEEE J. Sel. Top. Signal Process., vol. 18, no. 3, pp. 267–287, 2024. doi: 10.1109/JSTSP.2024.3416841
    [6]
    W. Fan, H. Li, W. Si, S. Luo, N. Lepora, and D. Zhang, “ViTacTip: Design and verification of a novel biomimetic physical vision-tactile fusion sensor,” in Proc. IEEE Int. Conf. Robotics and Autom., Yokohama, Japan, 2024, pp. 1056−1062.
    [7]
    L. Li, W. Liu, B. Tian, P. Hu, W. Gao, Y. Liu, F. Yang, Y. Duo, H. Cai, Y. Zhang, Z. Zhang, Z. Li, and Li Wen, “An aerial-aquatic hitchhiking robot with remora-inspired tactile sensors and thrust vectoring units,” Adv. Intell. Syst., vol. 7, no. 7, p. 2300381, 2025. doi: 10.1002/aisy.202300381
    [8]
    D. Kitouni, E. Chelly, M. Khoramshahi, and V. Perdereau, “Fingertip contact force direction control using tactile feedback,” in Proc. IEEE 20th Int. Conf. Autom. Science and Engineering, Bari, Italy, 2024, pp. 768−773.
    [9]
    P. Kampmann and F. Kirchner, “Towards a fine-manipulation system with tactile feedback for deep-sea environments,” Robot. Auton. Syst., vol. 67, pp. 115–121, May 2015. doi: 10.1016/j.robot.2014.09.033
    [10]
    A. Shaevitz, M. L. Johnston, and J. R. Davidson, “Design, characterization, and modeling of barometric tactile sensors for underwater applications,” in Proc. IEEE Int. Conf. Soft Robotics, Singapore, Singapore, 2023, pp. 1−6.
    [11]
    M. Lin, M. Vatani, J. W. Choi, S. Dilibal, and E. D. Engeberg, “Compliant underwater manipulator with integrated tactile sensor for nonlinear force feedback control of an SMA actuation system,” Sens. Actuators A: Phys., vol. 315, p. 112221, 2020. doi: 10.1016/j.sna.2020.112221
    [12]
    M. Kaboli and G. Cheng, “Robust tactile descriptors for discriminating objects from textural properties via artificial robotic skin,” IEEE Trans. Robot., vol. 34, no. 4, pp. 985–1003, Aug. 2018. doi: 10.1109/TRO.2018.2830364
    [13]
    N. Ou, Z. Chen, and S. Luo, “Marker or markerless? Mode-switchable optical tactile sensing for diverse robot tasks,” IEEE Robot. Autom. Lett., vol. 9, no. 10, pp. 8563–8570, 2024. doi: 10.1109/LRA.2024.3448208
    [14]
    W. Yuan, S. Dong, and E. H. Adelson, “GelSight: High-resolution robot tactile sensors for estimating geometry and force,” Sensors, vol. 17, no. 12, p. 2762, 2017. doi: 10.3390/s17122762
    [15]
    I. Andrussow, H. Sun, K. J. Kuchenbecker, and G. Martius, “Minsight: A fingertip-sized vision-based tactile sensor for robotic manipulation,” Adv. Intell. Syst., vol. 5, no. 8, p. 2300042, Aug. 2023. doi: 10.1002/aisy.202300042
    [16]
    N. F. Lepora, Y. Lin, B. Money-Coomes, and J. Lloyd, “DigiTac: A DIGIT-TacTip hybrid tactile sensor for comparing low-cost high-resolution robot touch,” IEEE Robot. Autom. Lett., vol. 7, no. 4, pp. 9382–9388, Oct. 2022. doi: 10.1109/LRA.2022.3190641
    [17]
    A. Alspach, K. Hashimoto, N. Kuppuswamy, and R. Tedrake, “Soft-bubble: A highly compliant dense geometry tactile sensor for robot manipulation,” in Proc. 2nd IEEE Int. Conf. Soft Robotics, Seoul, Korea (South), 2019, pp. 597−604.
    [18]
    A. Yamaguchi, “FingerVision with whiskers: Light touch detection with vision-based tactile sensors,” in Proc. IEEE Fifth IEEE Int. Conf. Robotic Computing, Taichung, China, 2021, pp. 56−64.
    [19]
    C. Zhang, S. Cui, S. Wang, J. Hu, Y. Huangfu, and B. Zhang, “High-precision 3D reconstruction study with emphasis on refractive calibration of GelStereo-type sensors,” Sensors, vol. 23, no. 5, p. 2675, Feb. 2023. doi: 10.3390/s23052675
    [20]
    M. Lambeta, P. W. Chou, S. Tian, B. Yang, B. Maloon, V. R. Most, D. Stroud, R. Santos, A. Byagowi, G. Kammerer, D. Jayaraman, and R. Calandra, “DIGIT: A novel design for a low-cost compact high-resolution tactile sensor with application to in-hand manipulation,” IEEE Robot. Autom. Lett., vol. 5, no. 3, pp. 3838–3845, Jul. 2020. doi: 10.1109/LRA.2020.2977257
    [21]
    P. Xu, J. Liu, X. Liu, X. Wang, J. Zheng, S. Wang, T. Chen, H. Wang, C. Wang, X. Fu, G. Xie, J. Tao, and M. Xu, “A bio-inspired and self-powered triboelectric tactile sensor for underwater vehicle perception,” npj Flex. Electron., vol. 6, no. 1, p. 25, Apr. 2022. doi: 10.1038/s41528-022-00160-0
    [22]
    P. Xu, J. Zheng, J. Liu, X. Liu, X. Wang, S. Wang, T. Guan, X. Fu, M. Xu, G. Xie, and Z. L. Wang, “Deep-learning-assisted underwater 3D tactile tensegrity,” Research, vol. 2023, no. 2, p. 0062, Feb. 2023.
    [23]
    H. Beem, Y. Liu, G. Barbastathis, M. Triantafyllou, “Vortex-induced vibration measurements of seal whiskers using digital holography,” in Proc. OCEANS 2014—Taipei, Taipei, China, 2014, pp. 1−4.
    [24]
    G. G. Muscolo, G. Moretti, and G. Cannata, “SUAS: A novel soft underwater artificial skin with capacitive transducers and hyperelastic membrane,” Robotica, vol. 37, no. 4, pp. 756–777, Apr. 2019. doi: 10.1017/S0263574718001315
    [25]
    P. Nadeau, M. Abbott, D. Melville, and H. S. Stuart, “Tactile sensing based on fingertip suction flow for submerged dexterous manipulation,” in Proc. IEEE Int. Conf. Robotics and Autom., Paris, France, 2020, pp. 3701−3707.
    [26]
    J. Zhang, P. Han, Q. Liu, S. Li, and B. Li, “The design of underwater tactile force sensor with differential pressure structure and backpropagation neural network calibration,” Meas. Control, vol. 57, no. 2, pp. 124–138, Feb. 2024. doi: 10.1177/00202940231194116
    [27]
    Z. Chen, N. Ou, J. Jiang, and S. Luo, “Deep domain adaptation regression for force calibration of optical tactile sensors,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Abu Dhabi, United Arab Emirates, 2024, pp. 13561−13568.
    [28]
    R. Li and B. Peng, “Implementing monocular visual-tactile sensors for robust manipulation,” Cyborg Bionic Syst., vol. 2022, p. 9797562, Sept. 2022. doi: 10.34133/2022/9797562
    [29]
    X. Lin and M. Wiertlewski, “Sensing the frictional state of a robotic skin via subtractive color mixing,” IEEE Robot. Autom. Lett., vol. 4, no. 3, pp. 2386–2392, Jul. 2019. doi: 10.1109/LRA.2019.2893434
    [30]
    C. Sferrazza and R. D’Andrea, “Design, motivation and evaluation of a full-resolution optical tactile sensor,” Sensors, vol. 19, no. 4, p. 928, Feb. 2019. doi: 10.3390/s19040928
    [31]
    Z. Lin, J. Zhuang, Y. Li, X. Wu, S. Luo, D. F. Gomes, F. Huang, and Z. Yang, “GelFinger: A novel visual-tactile sensor with multi-angle tactile image stitching,” IEEE Robot. Autom. Lett., vol. 8, no. 9, pp. 5982–5989, Sept. 2023. doi: 10.1109/LRA.2023.3302191
    [32]
    W. K. Do and M. Kennedy, “DenseTact: Optical tactile sensor for dense shape reconstruction,” in Proc. IEEE Int. Conf. Robotics and Autom., Philadelphia, PA, USA, 2022, pp. 6188−6194.
    [33]
    N. Kuppuswamy, A. Alspach, A. Uttamchandani, S. Creasey, T. Ikeda, and R. Tedrake, “Soft-bubble grippers for robust and perceptive manipulation,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Las Vegas, NV, USA, 2020, pp. 9917−9924.
    [34]
    S. Cui, R. Wang, J. Hu, J. Wei, S. Wang, and Z. Lou, “In-hand object localization using a novel high-resolution visuotactile sensor,” IEEE Trans. Ind. Electron., vol. 69, no. 6, pp. 6015–6025, Jun. 2022. doi: 10.1109/TIE.2021.3090697
    [35]
    J. Ma, Y. Wang, R. Wang, and S. Wang, “Remote operation with haptic force and virtual proxy for an underwater vehicle-manipulator system,” in Proc. IEEE 10th Data Driven Control and Learning Systems Conf., Suzhou, China, 2021, pp. 304−309.
    [36]
    C. Zhang, S. Cui, Y. Cai, J. Hu, R. Wang, and S. Wang, “Learning-based six-axis force/torque estimation using GelStereo fingertip visuotactile sensing,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Kyoto, Japan, 2022, pp. 3651−3658.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(4)

    Article Metrics

    Article views (11) PDF downloads(1) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return