Volume 12
Issue 12
IEEE/CAA Journal of Automatica Sinica
| Citation: | X. Hao, Y. Xia, H. Yang, and Z. Zuo, “Target tracking by cameras and millimeter-wave radars: A confidence information fusion method,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 12, pp. 2486–2498, Dec. 2025. doi: 10.1109/JAS.2025.125405 |
| [1] |
D. Feng, C. Haase-Schütz, L. Rosenbaum, and H. Hertlein, “Deep multi-modal object detection and semantic segmentation for autonomous driving: Datasets, methods, and challenges,” IEEE Trans. Intelligent Transportation Systems, vol. 22, no. 3, pp. 1341–1360, 2021. doi: 10.1109/TITS.2020.2972974
|
| [2] |
W. Jang, J. Hyun, J. An, and M. Cho, “A lane-level road marking map using a monocular camera,” IEEE Trans. Intelligent Transportation Systems, vol. 9, no. 1, pp. 187–204, 2022.
|
| [3] |
H. Lian, X. Pei, and X. Guo, “A local environment model based on multi-sensor perception for intelligent vehicles,” IEEE Sensors J., vol. 21, no. 14, pp. 15427–15436, 2021. doi: 10.1109/JSEN.2020.3018319
|
| [4] |
X. Li, Y. Zhou, and B. Hua, “Study of a multi-beam LiDAR perception assessment model for real-time autonomous driving,” IEEE Trans. Instrumentation and Measurement, vol. 70, pp. 1–15, 2021.
|
| [5] |
H. Geng, Z. Wang, Y. Chen, and X. Yi, “Variance-constrained filtering fusion for nonlinear cyber-physical systems with the denial-of-service attacks and stochastic communication protocol,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 6, pp. 978–989, 2022. doi: 10.1109/JAS.2022.105623
|
| [6] |
M. Davari, A. Harooni, A. Nasr, K. Savoji, and M. Soleimani, “Improving recognition accuracy for facial expressions using scattering wavelet,” EAI Endorsed Trans. AI and Robotics, vol. 3, Mar. 2024, DOI: 10.4108/airo.5145.
|
| [7] |
A. Gupta, “Improved hybrid preprocessing technique for effective segmentation of wheat canopies in chlorophyll fluorescence images,” EAI Endorsed Trans. AI and Robotics, vol. 3, Jan. 2024, DOI: 10.4108/airo.4621.
|
| [8] |
H. Hoorfar and A. Bagheri, “Advancing robot perception in non-spiral environments through camera-based image processing,” EAI Endorsed Trans. AI and Robotics, vol. 2, Aug. 2023, DOI: 10.4108/airo.3591.
|
| [9] |
A. J. Moshayedi, N. M. I. Uddin, A. S. Khan, J. Zhu, and M. E. Andani, “Designing and developing a vision-based system to investigate the emotional effects of news on short sleep at noon: An experimental case study,” Sensors, vol. 23, no. 20, pp. 1–20, 2023. doi: 10.1109/JSEN.2023.3321407
|
| [10] |
A. J. Moshayedi, A. S. Khan, M. Davari, T. Mokhtari, and M. E. Andani, “Micro robot as the feature of robotic in healthcare approach from design to application: The state of art and challenges,” EAI Endorsed Trans. AI and Robotics, vol. 3, Apr. 2024, DOI: 10.4108/airo.5602.
|
| [11] |
A. J. Moshayedi, A. S. Khan, S. Yang, and S. M. Zanjani, “Personal image classifier based handy pipe defect recognizer (HPD): Design and test,” in Proc. 7th Int. Conf. Intelligent Computing and Signal Processing (ICSP), pp. 1721–1728, 2022.
|
| [12] |
S. Yao, R. Guan, X. Huang, and Z. Li, “Radar-camera fusion for object detection and semantic segmentation in autonomous driving: A comprehensive review,” IEEE Trans. Intelligent Vehicles, vol. 9, no. 1, pp. 2094–2128, 2024. doi: 10.1109/TIV.2023.3307157
|
| [13] |
J. Bai, S. Li, L. Huang, and H. Chen, “Robust detection and tracking method for moving object based on radar and camera data fusion,” IEEE Sensors Journal, vol. 21, no. 9, pp. 10761–10774, 2021. doi: 10.1109/JSEN.2021.3049449
|
| [14] |
Z. Liu, Y. Cai, H. Wang, L. Chen, and Y. Li, “Robust target recognition and tracking of self-driving cars with radar and camera information fusion under severe weather conditions,” IEEE Trans. Intelligent Transportation Systems, vol. 23, no. 7, pp. 6640–6653, 2022. doi: 10.1109/TITS.2021.3059674
|
| [15] |
X. Hao, Y. Xia, H. Yang, and Z. Zuo, “Asynchronous information fusion in intelligent driving systems for target tracking using cameras and radars,” IEEE Trans. Industrial Electronics, vol. 70, pp. 2708–2717, 2022.
|
| [16] |
J. Wang, L. Chu, and C. Guo, “Target track enhancement based on asynchronous radar and camera fusion in intelligent driving system,” IEEE Sensors J., vol. 24, no. 3, pp. 3131–3143, 2024. doi: 10.1109/JSEN.2023.3339328
|
| [17] |
L. Deng, T. Zhou, B. Yin, Z. Guo, Q. Sun, and H. Wen, “An improved fusion positioning method for millimeter-wave radar and stereo camera,” IEEE Sensors J., vol. 24, no. 17, pp. 28028–28035, 2024. doi: 10.1109/JSEN.2024.3430072
|
| [18] |
L. Li and H. Cao, “Target tracking for tarkBot intelligent robots by fusing lidar and camera data,” IEEE Sensors Journal, vol. 24, no. 19, pp. 30920–30929, 2024. doi: 10.1109/JSEN.2024.3447015
|
| [19] |
S. S. Ram, “Fusion of inverse synthetic aperture radar and camera images for automotive target tracking,” IEEE J. Selected Topics in Signal Processing, vol. 17, no. 2, pp. 431–444, 2023. doi: 10.1109/JSTSP.2022.3211198
|
| [20] |
Y. Li, Y. Wang, C. Meng, Y. Duan, J. Ji, and Y. Zhang, “FARFusion: A practical roadside radar-camera fusion system for far-range perception,” IEEE Robotics and Autom. Letters, vol. 9, no. 6, pp. 5433–5440, 2024. doi: 10.1109/LRA.2024.3387700
|
| [21] |
A. Kosuge, S. Suehiro, M. Hamada, and T. Kurod, “mmWave-YOLO: A mmWave imaging radar-based real-time multiclass object recognition system for ADAS applications,” IEEE Trans. Instrumentation and Measurement, vol. 71, p. 2509810, 2022.
|
| [22] |
C. Chen, B. Liu, S. Wan, P. Qiao, and Q. Pei, “An edge traffic flow detection scheme based on deep learning in an intelligent transportation system,” IEEE Trans. Intelligent Transportation Systems, vol. 22, no. 3, pp. 1840–1852, 2020.
|
| [23] |
X. Hao, Y. Liang, L. Xu, and X. Wang, “Mode separability-based state estimation for uncertain constrained dynamic systems,” Automatica, vol. 115, pp. 1–11, 2020.
|
| [24] |
X. Zhou, Y. Li, B. He, and T. Bai, “GM-PHD-based multi-target visual tracking using entropy distribution and game theory,” IEEE Trans. Industrial Informatics, vol. 10, no. 2, pp. 1064–1076, 2014. doi: 10.1109/TII.2013.2294156
|
| [25] |
Z. Li, S. Li, A. Francis, and X. Luo, “A novel calibration system for robot arm via an open dataset and a learning perspective,” IEEE Trans. Circuits and Systems II: Express Briefs, vol. 69, no. 12, pp. 5169–5173, 2022. doi: 10.1109/TCSII.2022.3199158
|
| [26] |
Z. Li, S. Li, and X. Luo, “An overview of calibration technology of industrial robots,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 1, pp. 23–26, 2021. doi: 10.1109/JAS.2020.1003381
|
| [27] |
Z. Li, S. Li, O. O. Bamasag, A. Alhothali, and X. Luo, “Diversified regularization enhanced training for effective manipulator calibration,” IEEE Trans. Neural Networks and Learning Systems, vol. 34, no. 11, pp. 8778–8790, 2022.
|
| [28] |
E. Aghajari and A. A. K. AbdulRahim, “Prediction of short circuit current of wind turbines based on artificial neural network model,” EAI Endorsed Trans. AI and Robotics, vol. 3, 2024, DOI: 10.4108/airo.5955.
|
| [29] |
B. N. Vo and W. K. Ma, “The Gaussian mixture probability hypothesis density filter,” IEEE Trans. Signal Processing, vol. 54, pp. 4091–4104, 2006. doi: 10.1109/TSP.2006.881190
|
| [30] |
Y. Pan, L. Zhang, Z. Li, and L. Ding, “Improved fuzzy bayesian network-based risk analysis with interval-valued fuzzy sets and D-S evidence theory,” IEEE Trans. Fuzzy Systems, vol. 28, no. 9, pp. 2063–2077, 2020. doi: 10.1109/TFUZZ.2019.2929024
|