A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 12 Issue 11
Nov.  2025

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 19.2, Top 1 (SCI Q1)
    CiteScore: 28.2, Top 1% (Q1)
    Google Scholar h5-index: 95, TOP 5
Turn off MathJax
Article Contents
Y. Xie, J. Qiao, D. Wang, and M. Yuan, “A novel self-adjusting dual-mode evolutionary framework for multi-task optimization,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 11, pp. 2239–2252, Nov. 2025. doi: 10.1109/JAS.2025.125273
Citation: Y. Xie, J. Qiao, D. Wang, and M. Yuan, “A novel self-adjusting dual-mode evolutionary framework for multi-task optimization,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 11, pp. 2239–2252, Nov. 2025. doi: 10.1109/JAS.2025.125273

A Novel Self-Adjusting Dual-Mode Evolutionary Framework for Multi-Task Optimization

doi: 10.1109/JAS.2025.125273
Funds:  This work was supported in part by the Plan of Key Scientific Research Projects of Colleges and Universities in Henan Province (25A413005, 24A120005), the National Science and Technology Major Project (2021ZD0112302), and the National Natural Science Foundation of China (62222301, 61890930-5, 62021003)
More Information
  • Evolutionary multi-task optimization (EMTO) presents an efficient way to solve multiple tasks simultaneously. However, difficulties they face in curbing the performance degradation caused by unmatched knowledge transfer and inefficient evolutionary strategies become more severe as the number of iterations increases. Motivated by this, a novel self-adjusting dual-mode evolutionary framework, which integrates variable classification evolution and knowledge dynamic transfer strategies, is designed to compensate for this deficiency. First, a dual-mode evolutionary framework is designed to meet the needs of evolution in different states. Then, a self-adjusting strategy based on spatial-temporal information is adopted to guide the selection of evolutionary modes. Second, a classification mechanism for decision variables is proposed to achieve the grouping of variables with different attributes. Then, the evolutionary algorithm with a multi-operator mechanism is employed to conduct classified evolution of decision variables. Third, an evolutionary strategy based on multi-source knowledge sharing is presented to realize the cross-domain transfer of knowledge. Then, a dynamic weighting strategy is developed for efficient utilization of knowledge. Finally, by conducting experiments and comparing the designed method with several existing algorithms, the empirical results confirm that it significantly outperforms its peers in tackling benchmark instances.

     

  • loading
  • [1]
    S. Qi, R. Wang, T. Zhang, X. Yang, R. Sun, and L. Wang, “A two-layer encoding learning swarm optimizer based on frequent itemsets for sparse large-scale multi-objective optimization,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 6, pp. 1342–1357, Jun. 2024. doi: 10.1109/JAS.2024.124341
    [2]
    W. Li, X. Yao, K. Li, R. Wang, T. Zhang, and L. Wang, “Coevolutionary framework for generalized multimodal multi-objective optimization,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 7, pp. 1544–1556, Jul. 2023. doi: 10.1109/JAS.2023.123609
    [3]
    M. Yu, J. Liang, K. Zhao, and Z. Wu, “An aRBF surrogate-assisted neighborhood field optimizer for expensive problems,” Swarm Evol. Comput., vol. 68, p. 100972, Feb. 2022. doi: 10.1016/j.swevo.2021.100972
    [4]
    Y. Hua, Q. Liu, K. Hao, and Y. Jin, “A survey of evolutionary algorithms for multi-objective optimization problems with irregular Pareto fronts,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 2, pp. 303–318, Feb. 2021. doi: 10.1109/JAS.2021.1003817
    [5]
    S. Liu, Z. Wang, Q. Lin, J. Li, and K. C. Tan, “Learning-aided evolutionary search and selection for scaling-up constrained multiobjective optimization,” IEEE Trans. Evol. Comput., vol. 29, no. 5, pp. 1634–1648, Oct. 2025. doi: 10.1109/TEVC.2024.3380366
    [6]
    H. Han, Y. Liu, and J. Qiao, “Mechanism-data-driven multiobjective optimization for wastewater treatment process,” IEEE Trans. Industr. Inform., vol. 20, no. 5, pp. 7810–7819, May 2024. doi: 10.1109/TII.2024.3364835
    [7]
    R. Li, W. Gong, L. Wang, C. Lu, Z. Pan, and X. Zhuang, “Double DQN-based coevolution for green distributed heterogeneous hybrid flowshop scheduling with multiple priorities of jobs,” IEEE Trans. Autom. Sci. Eng., vol. 21, no. 4, pp. 6550–6562, Oct. 2024. doi: 10.1109/TASE.2023.3327792
    [8]
    Z. Lei, S. Gao, Z. Zhang, H. Yang, and H. Li, “A chaotic local search-based particle swarm optimizer for large-scale complex wind farm layout optimization,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 5, pp. 1168–1180, May 2023. doi: 10.1109/JAS.2023.123387
    [9]
    X. Wang, L. Liu, L. Duan, and Q. Liao, “Multi-objective optimization for an industrial grinding and classification process based on PBM and RSM,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 11, pp. 2124–2135, Nov. 2023. doi: 10.1109/JAS.2023.123333
    [10]
    A. P. Engelbrecht, J. Grobler, and J. Langeveld, “Set based particle swarm optimization for the feature selection problem,” Eng. Appl. Artif. Intell., vol. 85, pp. 324–336, Oct. 2019. doi: 10.1016/j.engappai.2019.06.008
    [11]
    X.-F. Liu, Z.-H. Zhan, and J. Zhang, “Resource-aware distributed differential evolution for training expensive neural-network-based controller in power electronic circuit,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 11, pp. 6286–6296, Nov 2022. doi: 10.1109/TNNLS.2021.3075205
    [12]
    X. Zhang, Z. Han, and J. Zhao, “A multi-stage differential-multifactorial evolutionary algorithm for ingredient optimization in the copper industry,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 10, pp. 2135–2153, Oct. 2024. doi: 10.1109/JAS.2023.124116
    [13]
    K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197, Apr. 2002. doi: 10.1109/4235.996017
    [14]
    L. Zhang, Q. Kang, Q. Deng, L. Xu, and Q. Wu, “A line complex-based evolutionary algorithm for many-objective optimization,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 5, pp. 1150–1167, May 2023. doi: 10.1109/JAS.2023.123495
    [15]
    K. Shang and H. Ishibuchi, “A new hypervolume-based evolutionary algorithm for many-objective optimization,” IEEE Trans. Evol. Comput., vol. 24, no. 5, pp. 839–852, Oct. 2020. doi: 10.1109/TEVC.2020.2964705
    [16]
    Y. Tian, R. Cheng, X. Zhang, F. Cheng, and Y. Jin, “An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility,” IEEE Trans. Evol. Comput., vol. 22, no. 4, pp. 609–622, Aug. 2018. doi: 10.1109/TEVC.2017.2749619
    [17]
    Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm based on decomposition,” IEEE Trans. Evol. Comput., vol. 11, no. 6, pp. 712–731, Dec. 2007. doi: 10.1109/TEVC.2007.892759
    [18]
    S. Jiang and S. Yang, “An improved multiobjective optimization evolutionary algorithm based on decomposition for complex Pareto fronts,” IEEE Trans. Cybern., vol. 46, no. 2, pp. 421–437, Feb. 2016. doi: 10.1109/TCYB.2015.2403131
    [19]
    Y. Qi, X. Ma, F. Liu, L. Jiao, J. Sun, and J. Wu, “MOEA/D with adaptive weight adjustment,” Evol. Comput., vol. 22, no. 2, pp. 231–264, Jun. 2014. doi: 10.1162/EVCO_a_00109
    [20]
    K. Yu, D. Zhang, J. Liang, B. Qu, M. Liu, K. Chen, C. Yue, and L. Wang, “A framework based on historical evolution learning for dynamic multiobjective optimization,” IEEE Trans. Evol. Comput., vol. 28, no. 4, pp. 1127–1140, Aug. 2024. doi: 10.1109/TEVC.2023.3290485
    [21]
    K. Qiao, J. Liang, Z. Liu, K. Yu, C. Yue, and B. Qu, “Evolutionary multitasking with global and local auxiliary tasks for constrained multi-objective optimization,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 10, pp. 1951–1964, Oct. 2023. doi: 10.1109/JAS.2023.123336
    [22]
    L. Feng, L. Zhou, J. Zhong, A. Gupta, Y.-S. Ong, K.-C. Tan, and A. K. Qin, “Evolutionary multitasking via explicit autoencoding,” IEEE Trans. Cybern., vol. 49, no. 9, pp. 3457–3470, Sep. 2019. doi: 10.1109/TCYB.2018.2845361
    [23]
    X. Ma, J. Yin, A. Zhu, X. Li, Y. Yu, L. Wang, Y. Qi, and Z. Zhu, “Enhanced multifactorial evolutionary algorithm with meme helper-tasks,” IEEE Trans. Cybern., vol. 52, no. 8, pp. 7837–7851, Aug. 2022. doi: 10.1109/TCYB.2021.3050516
    [24]
    H. Han, X. Bai, Y. Hou, and J. Qiao, “Multitask particle swarm optimization with heterogeneous domain adaptation,” IEEE Trans. Evol. Comput., vol. 28, no. 1, pp. 178–192, Feb. 2024. doi: 10.1109/TEVC.2023.3258491
    [25]
    M. Gong, Z. Tang, H. Li, and J. Zhang, “Evolutionary multitasking with dynamic resource allocating strategy,” IEEE Trans. Evol. Comput., vol. 23, no. 5, pp. 858–869, Oct. 2019. doi: 10.1109/TEVC.2019.2893614
    [26]
    Y. Hou, Y. Shen, H. Han, and J. Wang, “Many-task differential evolutionary algorithm based on Bi-space similarity,” IEEE Trans. Evol. Comput., vol. 29, no. 4, pp. 1215–1226, Aug. 2025. doi: 10.1109/TEVC.2024.3398436
    [27]
    X. Xue, K. Zhang, K. C. Tan, L. Feng, J. Wang, G. Chen, X. Zhao, L. Zhang, and J. Yao, “Affine transformation-enhanced multifactorial optimization for heterogeneous problems,” IEEE Trans. Cybern., vol. 52, no. 7, pp. 6217–6231, Jul. 2022. doi: 10.1109/TCYB.2020.3036393
    [28]
    X. Ma, Y. Zheng, Z. Zhu, X. Li, L. Wang, Y. Qi, and J. Yang, “Improving evolutionary multitasking optimization by leveraging inter-task gene similarity and mirror transformation,” IEEE Comput. Intell. Mag., vol. 16, no. 4, pp. 38–53, Nov. 2021. doi: 10.1109/MCI.2021.3108311
    [29]
    J. Lin, H.-L. Liu, K. C. Tan, and F. Gu, “An effective knowledge transfer approach for multiobjective multitasking optimization,” IEEE Trans. Cybern., vol. 51, no. 6, pp. 3238–3248, Jun. 2021. doi: 10.1109/TCYB.2020.2969025
    [30]
    K. K. Bali, A. Gupta, Y.-S. Ong, and P. S. Tan, “Cognizant multitasking in multiobjective multifactorial evolution: MO-MFEA-II,” IEEE Trans. Cybern., vol. 51, no. 4, pp. 1784–1796, Apr. 2021. doi: 10.1109/TCYB.2020.2981733
    [31]
    Z. Liang, X. Xu, L. Liu, Y. Tu, and Z. Zhu, “Evolutionary many-task optimization based on multisource knowledge transfer,” IEEE Trans. Evol. Comput., vol. 26, no. 2, pp. 319–333, Apr. 2022. doi: 10.1109/TEVC.2021.3101697
    [32]
    X. Zheng, A. K. Qin, M. Gong, and D. Zhou, “Self-regulated evolutionary multitask optimization,” IEEE Trans. Evol. Comput., vol. 24, no. 1, pp. 16–28, Feb. 2020. doi: 10.1109/TEVC.2019.2904696
    [33]
    Z. Liang, H. Dong, C. Liu, W. Liang, and Z. Zhu, “Evolutionary multitasking for multiobjective optimization with subspace alignment and adaptive differential evolution,” IEEE Trans. Cybern., vol. 52, no. 4, pp. 2096–2109, Apr. 2022. doi: 10.1109/TCYB.2020.2980888
    [34]
    Y. Li, W. Gong, and Q. Gu, “Transfer task-averaged natural gradient for efficient many-task optimization,” IEEE Trans. Evol. Comput., vol. 29, no. 5, pp. 1952–1965, Oct. 2025. doi: 10.1109/TEVC.2024.3459862
    [35]
    H. Li and Q. Zhang, “Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II,” IEEE Trans. Evol. Comput., vol. 13, no. 2, pp. 284–302, Apr. 2009. doi: 10.1109/TEVC.2008.925798
    [36]
    Q. Lin, Z. Liu, Q. Yan, Z. Du, C. A. C. Coello, Z. Liang, W. Wang, and J. Chen, “Adaptive composite operator selection and parameter control for multiobjective evolutionary algorithm,” Inf. Sci., vol. 339, pp. 332–352, Apr. 2016. doi: 10.1016/j.ins.2015.12.022
    [37]
    R. Storn and K. Price, “Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces,” J. Glob. Optim., vol. 11, no. 4, pp. 341–359, Dec. 1997. doi: 10.1023/A:1008202821328
    [38]
    K. Qiao, K. Yu, B. Qu, J. Liang, H. Song, and C. Yue, “An evolutionary multitasking optimization framework for constrained multiobjective optimization problems,” IEEE Trans. Evol. Comput., vol. 26, no. 2, pp. 263–277, Apr. 2022. doi: 10.1109/TEVC.2022.3145582
    [39]
    H. Han, X. Bai, H. Han, Y. Hou, and J. Qiao, “Self-adjusting multitask particle swarm optimization,” IEEE Trans. Evol. Comput., vol. 26, no. 1, pp. 145–158, Feb. 2022. doi: 10.1109/TEVC.2021.3098523
    [40]
    J.-Y. Li, Z.-H. Zhan, K. C. Tan, and J. Zhang, “A meta-knowledge transfer-based differential evolution for multitask optimization,” IEEE Trans. Evol. Comput., vol. 26, no. 4, pp. 719–734, Aug. 2022. doi: 10.1109/TEVC.2021.3131236
    [41]
    Y. Li, W. Gong, and S. Li, “Multitask evolution strategy with knowledge-guided external sampling,” IEEE Trans. Evol. Comput., vol. 28, no. 6, pp. 1733–1745, Dec. 2024. doi: 10.1109/TEVC.2023.3330265
    [42]
    Z. Tang, M. Gong, Y. Xie, H. Li, and A. K. Qin, “Multi-task particle swarm optimization with dynamic neighbor and level-based inter-task learning,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 6, no. 2, pp. 300–314, Apr. 2022. doi: 10.1109/TETCI.2021.3051970
    [43]
    D. Wu and X. Tan, “Multitasking genetic algorithm (MTGA) for fuzzy system optimization,” IEEE Trans. Fuzzy Syst., vol. 28, no. 6, pp. 1050–1061, Jun. 2020. doi: 10.1109/TFUZZ.2020.2968863
    [44]
    K. K. Bali, Y.-S. Ong, A. Gupta, and P. S. Tan, “Multifactorial evolutionary algorithm with online transfer parameter estimation: MFEA-II,” IEEE Trans. Evol. Comput., vol. 24, no. 1, pp. 69–83, Feb. 2020. doi: 10.1109/TEVC.2019.2906927
    [45]
    L. Bai, W. Lin, A. Gupta, and Y.-S. Ong, “From Multitask gradient descent to gradient-free evolutionary multitasking: A proof of faster convergence,” IEEE Trans. Cybern., vol. 52, no. 8, pp. 8561–8573, Aug. 2022. doi: 10.1109/TCYB.2021.3052509
    [46]
    J. Ding, C. Yang, Y. Jin, and T. Chai, “Generalized multitasking for evolutionary optimization of expensive problems,” IEEE Trans. Evol. Comput., vol. 23, no. 1, pp. 44–58, Feb. 2019. doi: 10.1109/TEVC.2017.2785351
    [47]
    X. Ma, Q. Chen, Y. Yu, Y. Sun, L. Ma, and Z. Zhu, “A two-level transfer learning algorithm for evolutionary multitasking,” Front. Neurosci., vol. 13, p. 1408, Jan. 2020. doi: 10.3389/fnins.2019.01408
    [48]
    C. Wang, J. Liu, K. Wu, and Z. Wu, “Solving multitask optimization problems with adaptive knowledge transfer via anomaly detection,” IEEE Trans. Evol. Comput., vol. 26, no. 2, pp. 304–318, Apr. 2022. doi: 10.1109/TEVC.2021.3068157
    [49]
    C. Lyu, Y. Shi, and L. Sun, “A novel multi-task optimization algorithm based on the brainstorming process,” IEEE Access, vol. 8, pp. 217134–217149, Dec. 2020. doi: 10.1109/ACCESS.2020.3042004
    [50]
    A. Gupta, Y.-S. Ong, F. Liang, and K. C. Tan, “Multiobjective multifactorial optimization in evolutionary multitasking,” IEEE Trans. Evol. Comput., vol. 47, no. 7, pp. 1652–1665, Jul. 2017.
    [51]
    Z. Liang, W. Liang, Z. Wang, X. Ma, L. Liu, and Z. Zhu, “Multiobjective evolutionary multitasking with two-stage adaptive knowledge transfer based on population distribution,” IEEE Trans. Syst. Man Cybern. Syst., vol. 52, no. 7, pp. 4457–4469, Jul. 2022. doi: 10.1109/TSMC.2021.3096220
    [52]
    T. Wei and J. Zhong, “Towards generalized resource allocation on evolutionary multitasking for multi-objective optimization,” IEEE Comput. Intell. Mag., vol. 16, no. 4, pp. 20–37, Nov. 2021. doi: 10.1109/MCI.2021.3108310
    [53]
    J. Yi, J. Bai, H. He, W. Zhou, and L. Yao, “A multifactorial evolutionary algorithm for multitasking under interval uncertainties,” IEEE Trans. Evol. Comput., vol. 24, no. 5, pp. 908–922, Oct. 2020. doi: 10.1109/TEVC.2020.2975381
    [54]
    Z. Chen, Y. Zhou, Y. He, and J. Zhang, “Learning task relationships in evolutionary multitasking for multiobjective continuous optimization,” IEEE Trans. Cybern., vol. 52, no. 6, pp. 5278–5289, Jun. 2022. doi: 10.1109/TCYB.2020.3029176
    [55]
    Y. Zheng, Z. Zhu, Y. Qi, L. Wang, and X. Ma, “Multi-objective multifactorial evolutionary algorithm enhanced with the weighting helper-task,” in Proc. 2nd Int. Conf. Industrial Artificial Intelligence, Shenyang, China, 2020, pp. 1-6.
    [56]
    C. Yang, J. Ding, Y. Jin, C. Wang, and T. Chai, “Multitasking multiobjective evolutionary operational indices optimization of beneficiation processes,” IEEE Trans. Autom. Sci. Eng., vol. 16, no. 3, pp. 1046–1057, Jul. 2019. doi: 10.1109/TASE.2018.2865593
    [57]
    Y. Chen, J. Zhong, and M. Tan, “A fast memetic multi-objective differential evolution for multi-tasking optimization,” in Proc. IEEE Congr. Evolutionary Computation, Rio de Janeiro, Brazil, 2018, pp. 1−8.
    [58]
    H. T. T. Binh, N. Q. Tuan, and D. C. T. Long, “A multi-objective multi-factorial evolutionary algorithm with reference-point-based approach,” in Proc. IEEE Congr. Evolutionary Computation, Wellington, New Zealand, 2019, pp. 2824-2831.
    [59]
    Q. Zhang, S. Yang, S. Jiang, R. Wang, and X. Li, “Novel prediction strategies for dynamic multiobjective optimization,” IEEE Trans. Evol. Comput., vol. 24, no. 2, pp. 260–274, Apr. 2020. doi: 10.1109/TEVC.2019.2922834
    [60]
    M. Rong, D. Gong, Y. Zhang, Y. Jin, and W. Pedrycz, “Multidirectional prediction approach for dynamic multiobjective optimization problems,” IEEE Trans. Cybern., vol. 49, no. 9, pp. 3362–3374, Sep. 2019. doi: 10.1109/TCYB.2018.2842158
    [61]
    X. Ma, F. Liu, Y. Qi, X. Wang, L. Li, L. Jiao, M. Yin, and M. Gong, “A multiobjective evolutionary algorithm based on decision variable analyses for multiobjective optimization problems with large-scale variables,” IEEE Trans. Evol. Comput., vol. 20, no. 2, pp. 275–298, Apr. 2016. doi: 10.1109/TEVC.2015.2455812
    [62]
    X. Zhang, Y. Tian, R. Cheng, and Y. Jin, “A decision variable clustering-based evolutionary algorithm for large-scale many-objective optimization,” IEEE Trans. Evol. Comput., vol. 22, no. 1, pp. 97–112, Feb. 2018. doi: 10.1109/TEVC.2016.2600642
    [63]
    C. Yang, J. Ding, K. C. Tan, and Y. Jin, “Two-stage assortative mating for multi-objective multifactorial evolutionary optimization,” in Proc. IEEE 56th Annu. Conf. Decision and Control, Melbourne, Australia, 2017, pp. 76-81.
    [64]
    Q. Zhang, A. Zhou, and Y. Jin, “RM-MEDA: A regularity model-based multiobjective estimation of distribution algorithm,” IEEE Trans. Evol. Comput., vol. 12, no. 1, pp. 41–63, Feb. 2008. doi: 10.1109/TEVC.2007.894202
    [65]
    S. S. Vallender, “Calculation of the Wasserstein distance between probability distributions on the line,” Theory Probab. Its Appl., vol. 18, no. 4, pp. 784–786, Sep. 1974. doi: 10.1137/1118101
    [66]
    Y. Yuan, Y.-S. Ong, L. Feng, A. K. Qin, A. Gupta, B. Da, Q. Zhang, K. C. Tan, Y. Jin, and H. Ishibuchi, “Evolutionary multitasking for multiobjective continuous optimization: Benchmark problems, performance metrics and baseline results,” arXiv preprint arXiv: 1706.02766, 2017.
    [67]
    L. Feng, K. Qin, A. Gupta, Y. Yuan, Y.-S. Ong, and X. Chi, “IEEE CEC2019 Competition on Evolutionary Multi-Task Optimization,” 2019. [Online]. Available: http://www.bdsc.site/websites/MTO_competiton_2019/MTO_Competition_CEC_2019.html.
    [68]
    Y. Feng, L. Feng, S. Kwong, and K. C. Tan, “A multivariation multifactorial evolutionary algorithm for large-scale multiobjective optimization,” IEEE Trans. Evol. Comput., vol. 26, no. 2, pp. 248–262, Apr. 2022. doi: 10.1109/TEVC.2021.3119933
    [69]
    M. P. Fay and M. A. Proschan, “Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules,” Stat. Surv., vol. 4, no. 1, pp. 1–39, Feb. 2010.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(5)

    Article Metrics

    Article views (8) PDF downloads(1) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return