Volume 12
Issue 11
IEEE/CAA Journal of Automatica Sinica
| Citation: | Y. Xie, J. Qiao, D. Wang, and M. Yuan, “A novel self-adjusting dual-mode evolutionary framework for multi-task optimization,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 11, pp. 2239–2252, Nov. 2025. doi: 10.1109/JAS.2025.125273 |
| [1] |
S. Qi, R. Wang, T. Zhang, X. Yang, R. Sun, and L. Wang, “A two-layer encoding learning swarm optimizer based on frequent itemsets for sparse large-scale multi-objective optimization,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 6, pp. 1342–1357, Jun. 2024. doi: 10.1109/JAS.2024.124341
|
| [2] |
W. Li, X. Yao, K. Li, R. Wang, T. Zhang, and L. Wang, “Coevolutionary framework for generalized multimodal multi-objective optimization,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 7, pp. 1544–1556, Jul. 2023. doi: 10.1109/JAS.2023.123609
|
| [3] |
M. Yu, J. Liang, K. Zhao, and Z. Wu, “An aRBF surrogate-assisted neighborhood field optimizer for expensive problems,” Swarm Evol. Comput., vol. 68, p. 100972, Feb. 2022. doi: 10.1016/j.swevo.2021.100972
|
| [4] |
Y. Hua, Q. Liu, K. Hao, and Y. Jin, “A survey of evolutionary algorithms for multi-objective optimization problems with irregular Pareto fronts,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 2, pp. 303–318, Feb. 2021. doi: 10.1109/JAS.2021.1003817
|
| [5] |
S. Liu, Z. Wang, Q. Lin, J. Li, and K. C. Tan, “Learning-aided evolutionary search and selection for scaling-up constrained multiobjective optimization,” IEEE Trans. Evol. Comput., vol. 29, no. 5, pp. 1634–1648, Oct. 2025. doi: 10.1109/TEVC.2024.3380366
|
| [6] |
H. Han, Y. Liu, and J. Qiao, “Mechanism-data-driven multiobjective optimization for wastewater treatment process,” IEEE Trans. Industr. Inform., vol. 20, no. 5, pp. 7810–7819, May 2024. doi: 10.1109/TII.2024.3364835
|
| [7] |
R. Li, W. Gong, L. Wang, C. Lu, Z. Pan, and X. Zhuang, “Double DQN-based coevolution for green distributed heterogeneous hybrid flowshop scheduling with multiple priorities of jobs,” IEEE Trans. Autom. Sci. Eng., vol. 21, no. 4, pp. 6550–6562, Oct. 2024. doi: 10.1109/TASE.2023.3327792
|
| [8] |
Z. Lei, S. Gao, Z. Zhang, H. Yang, and H. Li, “A chaotic local search-based particle swarm optimizer for large-scale complex wind farm layout optimization,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 5, pp. 1168–1180, May 2023. doi: 10.1109/JAS.2023.123387
|
| [9] |
X. Wang, L. Liu, L. Duan, and Q. Liao, “Multi-objective optimization for an industrial grinding and classification process based on PBM and RSM,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 11, pp. 2124–2135, Nov. 2023. doi: 10.1109/JAS.2023.123333
|
| [10] |
A. P. Engelbrecht, J. Grobler, and J. Langeveld, “Set based particle swarm optimization for the feature selection problem,” Eng. Appl. Artif. Intell., vol. 85, pp. 324–336, Oct. 2019. doi: 10.1016/j.engappai.2019.06.008
|
| [11] |
X.-F. Liu, Z.-H. Zhan, and J. Zhang, “Resource-aware distributed differential evolution for training expensive neural-network-based controller in power electronic circuit,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 11, pp. 6286–6296, Nov 2022. doi: 10.1109/TNNLS.2021.3075205
|
| [12] |
X. Zhang, Z. Han, and J. Zhao, “A multi-stage differential-multifactorial evolutionary algorithm for ingredient optimization in the copper industry,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 10, pp. 2135–2153, Oct. 2024. doi: 10.1109/JAS.2023.124116
|
| [13] |
K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197, Apr. 2002. doi: 10.1109/4235.996017
|
| [14] |
L. Zhang, Q. Kang, Q. Deng, L. Xu, and Q. Wu, “A line complex-based evolutionary algorithm for many-objective optimization,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 5, pp. 1150–1167, May 2023. doi: 10.1109/JAS.2023.123495
|
| [15] |
K. Shang and H. Ishibuchi, “A new hypervolume-based evolutionary algorithm for many-objective optimization,” IEEE Trans. Evol. Comput., vol. 24, no. 5, pp. 839–852, Oct. 2020. doi: 10.1109/TEVC.2020.2964705
|
| [16] |
Y. Tian, R. Cheng, X. Zhang, F. Cheng, and Y. Jin, “An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility,” IEEE Trans. Evol. Comput., vol. 22, no. 4, pp. 609–622, Aug. 2018. doi: 10.1109/TEVC.2017.2749619
|
| [17] |
Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm based on decomposition,” IEEE Trans. Evol. Comput., vol. 11, no. 6, pp. 712–731, Dec. 2007. doi: 10.1109/TEVC.2007.892759
|
| [18] |
S. Jiang and S. Yang, “An improved multiobjective optimization evolutionary algorithm based on decomposition for complex Pareto fronts,” IEEE Trans. Cybern., vol. 46, no. 2, pp. 421–437, Feb. 2016. doi: 10.1109/TCYB.2015.2403131
|
| [19] |
Y. Qi, X. Ma, F. Liu, L. Jiao, J. Sun, and J. Wu, “MOEA/D with adaptive weight adjustment,” Evol. Comput., vol. 22, no. 2, pp. 231–264, Jun. 2014. doi: 10.1162/EVCO_a_00109
|
| [20] |
K. Yu, D. Zhang, J. Liang, B. Qu, M. Liu, K. Chen, C. Yue, and L. Wang, “A framework based on historical evolution learning for dynamic multiobjective optimization,” IEEE Trans. Evol. Comput., vol. 28, no. 4, pp. 1127–1140, Aug. 2024. doi: 10.1109/TEVC.2023.3290485
|
| [21] |
K. Qiao, J. Liang, Z. Liu, K. Yu, C. Yue, and B. Qu, “Evolutionary multitasking with global and local auxiliary tasks for constrained multi-objective optimization,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 10, pp. 1951–1964, Oct. 2023. doi: 10.1109/JAS.2023.123336
|
| [22] |
L. Feng, L. Zhou, J. Zhong, A. Gupta, Y.-S. Ong, K.-C. Tan, and A. K. Qin, “Evolutionary multitasking via explicit autoencoding,” IEEE Trans. Cybern., vol. 49, no. 9, pp. 3457–3470, Sep. 2019. doi: 10.1109/TCYB.2018.2845361
|
| [23] |
X. Ma, J. Yin, A. Zhu, X. Li, Y. Yu, L. Wang, Y. Qi, and Z. Zhu, “Enhanced multifactorial evolutionary algorithm with meme helper-tasks,” IEEE Trans. Cybern., vol. 52, no. 8, pp. 7837–7851, Aug. 2022. doi: 10.1109/TCYB.2021.3050516
|
| [24] |
H. Han, X. Bai, Y. Hou, and J. Qiao, “Multitask particle swarm optimization with heterogeneous domain adaptation,” IEEE Trans. Evol. Comput., vol. 28, no. 1, pp. 178–192, Feb. 2024. doi: 10.1109/TEVC.2023.3258491
|
| [25] |
M. Gong, Z. Tang, H. Li, and J. Zhang, “Evolutionary multitasking with dynamic resource allocating strategy,” IEEE Trans. Evol. Comput., vol. 23, no. 5, pp. 858–869, Oct. 2019. doi: 10.1109/TEVC.2019.2893614
|
| [26] |
Y. Hou, Y. Shen, H. Han, and J. Wang, “Many-task differential evolutionary algorithm based on Bi-space similarity,” IEEE Trans. Evol. Comput., vol. 29, no. 4, pp. 1215–1226, Aug. 2025. doi: 10.1109/TEVC.2024.3398436
|
| [27] |
X. Xue, K. Zhang, K. C. Tan, L. Feng, J. Wang, G. Chen, X. Zhao, L. Zhang, and J. Yao, “Affine transformation-enhanced multifactorial optimization for heterogeneous problems,” IEEE Trans. Cybern., vol. 52, no. 7, pp. 6217–6231, Jul. 2022. doi: 10.1109/TCYB.2020.3036393
|
| [28] |
X. Ma, Y. Zheng, Z. Zhu, X. Li, L. Wang, Y. Qi, and J. Yang, “Improving evolutionary multitasking optimization by leveraging inter-task gene similarity and mirror transformation,” IEEE Comput. Intell. Mag., vol. 16, no. 4, pp. 38–53, Nov. 2021. doi: 10.1109/MCI.2021.3108311
|
| [29] |
J. Lin, H.-L. Liu, K. C. Tan, and F. Gu, “An effective knowledge transfer approach for multiobjective multitasking optimization,” IEEE Trans. Cybern., vol. 51, no. 6, pp. 3238–3248, Jun. 2021. doi: 10.1109/TCYB.2020.2969025
|
| [30] |
K. K. Bali, A. Gupta, Y.-S. Ong, and P. S. Tan, “Cognizant multitasking in multiobjective multifactorial evolution: MO-MFEA-II,” IEEE Trans. Cybern., vol. 51, no. 4, pp. 1784–1796, Apr. 2021. doi: 10.1109/TCYB.2020.2981733
|
| [31] |
Z. Liang, X. Xu, L. Liu, Y. Tu, and Z. Zhu, “Evolutionary many-task optimization based on multisource knowledge transfer,” IEEE Trans. Evol. Comput., vol. 26, no. 2, pp. 319–333, Apr. 2022. doi: 10.1109/TEVC.2021.3101697
|
| [32] |
X. Zheng, A. K. Qin, M. Gong, and D. Zhou, “Self-regulated evolutionary multitask optimization,” IEEE Trans. Evol. Comput., vol. 24, no. 1, pp. 16–28, Feb. 2020. doi: 10.1109/TEVC.2019.2904696
|
| [33] |
Z. Liang, H. Dong, C. Liu, W. Liang, and Z. Zhu, “Evolutionary multitasking for multiobjective optimization with subspace alignment and adaptive differential evolution,” IEEE Trans. Cybern., vol. 52, no. 4, pp. 2096–2109, Apr. 2022. doi: 10.1109/TCYB.2020.2980888
|
| [34] |
Y. Li, W. Gong, and Q. Gu, “Transfer task-averaged natural gradient for efficient many-task optimization,” IEEE Trans. Evol. Comput., vol. 29, no. 5, pp. 1952–1965, Oct. 2025. doi: 10.1109/TEVC.2024.3459862
|
| [35] |
H. Li and Q. Zhang, “Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II,” IEEE Trans. Evol. Comput., vol. 13, no. 2, pp. 284–302, Apr. 2009. doi: 10.1109/TEVC.2008.925798
|
| [36] |
Q. Lin, Z. Liu, Q. Yan, Z. Du, C. A. C. Coello, Z. Liang, W. Wang, and J. Chen, “Adaptive composite operator selection and parameter control for multiobjective evolutionary algorithm,” Inf. Sci., vol. 339, pp. 332–352, Apr. 2016. doi: 10.1016/j.ins.2015.12.022
|
| [37] |
R. Storn and K. Price, “Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces,” J. Glob. Optim., vol. 11, no. 4, pp. 341–359, Dec. 1997. doi: 10.1023/A:1008202821328
|
| [38] |
K. Qiao, K. Yu, B. Qu, J. Liang, H. Song, and C. Yue, “An evolutionary multitasking optimization framework for constrained multiobjective optimization problems,” IEEE Trans. Evol. Comput., vol. 26, no. 2, pp. 263–277, Apr. 2022. doi: 10.1109/TEVC.2022.3145582
|
| [39] |
H. Han, X. Bai, H. Han, Y. Hou, and J. Qiao, “Self-adjusting multitask particle swarm optimization,” IEEE Trans. Evol. Comput., vol. 26, no. 1, pp. 145–158, Feb. 2022. doi: 10.1109/TEVC.2021.3098523
|
| [40] |
J.-Y. Li, Z.-H. Zhan, K. C. Tan, and J. Zhang, “A meta-knowledge transfer-based differential evolution for multitask optimization,” IEEE Trans. Evol. Comput., vol. 26, no. 4, pp. 719–734, Aug. 2022. doi: 10.1109/TEVC.2021.3131236
|
| [41] |
Y. Li, W. Gong, and S. Li, “Multitask evolution strategy with knowledge-guided external sampling,” IEEE Trans. Evol. Comput., vol. 28, no. 6, pp. 1733–1745, Dec. 2024. doi: 10.1109/TEVC.2023.3330265
|
| [42] |
Z. Tang, M. Gong, Y. Xie, H. Li, and A. K. Qin, “Multi-task particle swarm optimization with dynamic neighbor and level-based inter-task learning,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 6, no. 2, pp. 300–314, Apr. 2022. doi: 10.1109/TETCI.2021.3051970
|
| [43] |
D. Wu and X. Tan, “Multitasking genetic algorithm (MTGA) for fuzzy system optimization,” IEEE Trans. Fuzzy Syst., vol. 28, no. 6, pp. 1050–1061, Jun. 2020. doi: 10.1109/TFUZZ.2020.2968863
|
| [44] |
K. K. Bali, Y.-S. Ong, A. Gupta, and P. S. Tan, “Multifactorial evolutionary algorithm with online transfer parameter estimation: MFEA-II,” IEEE Trans. Evol. Comput., vol. 24, no. 1, pp. 69–83, Feb. 2020. doi: 10.1109/TEVC.2019.2906927
|
| [45] |
L. Bai, W. Lin, A. Gupta, and Y.-S. Ong, “From Multitask gradient descent to gradient-free evolutionary multitasking: A proof of faster convergence,” IEEE Trans. Cybern., vol. 52, no. 8, pp. 8561–8573, Aug. 2022. doi: 10.1109/TCYB.2021.3052509
|
| [46] |
J. Ding, C. Yang, Y. Jin, and T. Chai, “Generalized multitasking for evolutionary optimization of expensive problems,” IEEE Trans. Evol. Comput., vol. 23, no. 1, pp. 44–58, Feb. 2019. doi: 10.1109/TEVC.2017.2785351
|
| [47] |
X. Ma, Q. Chen, Y. Yu, Y. Sun, L. Ma, and Z. Zhu, “A two-level transfer learning algorithm for evolutionary multitasking,” Front. Neurosci., vol. 13, p. 1408, Jan. 2020. doi: 10.3389/fnins.2019.01408
|
| [48] |
C. Wang, J. Liu, K. Wu, and Z. Wu, “Solving multitask optimization problems with adaptive knowledge transfer via anomaly detection,” IEEE Trans. Evol. Comput., vol. 26, no. 2, pp. 304–318, Apr. 2022. doi: 10.1109/TEVC.2021.3068157
|
| [49] |
C. Lyu, Y. Shi, and L. Sun, “A novel multi-task optimization algorithm based on the brainstorming process,” IEEE Access, vol. 8, pp. 217134–217149, Dec. 2020. doi: 10.1109/ACCESS.2020.3042004
|
| [50] |
A. Gupta, Y.-S. Ong, F. Liang, and K. C. Tan, “Multiobjective multifactorial optimization in evolutionary multitasking,” IEEE Trans. Evol. Comput., vol. 47, no. 7, pp. 1652–1665, Jul. 2017.
|
| [51] |
Z. Liang, W. Liang, Z. Wang, X. Ma, L. Liu, and Z. Zhu, “Multiobjective evolutionary multitasking with two-stage adaptive knowledge transfer based on population distribution,” IEEE Trans. Syst. Man Cybern. Syst., vol. 52, no. 7, pp. 4457–4469, Jul. 2022. doi: 10.1109/TSMC.2021.3096220
|
| [52] |
T. Wei and J. Zhong, “Towards generalized resource allocation on evolutionary multitasking for multi-objective optimization,” IEEE Comput. Intell. Mag., vol. 16, no. 4, pp. 20–37, Nov. 2021. doi: 10.1109/MCI.2021.3108310
|
| [53] |
J. Yi, J. Bai, H. He, W. Zhou, and L. Yao, “A multifactorial evolutionary algorithm for multitasking under interval uncertainties,” IEEE Trans. Evol. Comput., vol. 24, no. 5, pp. 908–922, Oct. 2020. doi: 10.1109/TEVC.2020.2975381
|
| [54] |
Z. Chen, Y. Zhou, Y. He, and J. Zhang, “Learning task relationships in evolutionary multitasking for multiobjective continuous optimization,” IEEE Trans. Cybern., vol. 52, no. 6, pp. 5278–5289, Jun. 2022. doi: 10.1109/TCYB.2020.3029176
|
| [55] |
Y. Zheng, Z. Zhu, Y. Qi, L. Wang, and X. Ma, “Multi-objective multifactorial evolutionary algorithm enhanced with the weighting helper-task,” in Proc. 2nd Int. Conf. Industrial Artificial Intelligence, Shenyang, China, 2020, pp. 1-6.
|
| [56] |
C. Yang, J. Ding, Y. Jin, C. Wang, and T. Chai, “Multitasking multiobjective evolutionary operational indices optimization of beneficiation processes,” IEEE Trans. Autom. Sci. Eng., vol. 16, no. 3, pp. 1046–1057, Jul. 2019. doi: 10.1109/TASE.2018.2865593
|
| [57] |
Y. Chen, J. Zhong, and M. Tan, “A fast memetic multi-objective differential evolution for multi-tasking optimization,” in Proc. IEEE Congr. Evolutionary Computation, Rio de Janeiro, Brazil, 2018, pp. 1−8.
|
| [58] |
H. T. T. Binh, N. Q. Tuan, and D. C. T. Long, “A multi-objective multi-factorial evolutionary algorithm with reference-point-based approach,” in Proc. IEEE Congr. Evolutionary Computation, Wellington, New Zealand, 2019, pp. 2824-2831.
|
| [59] |
Q. Zhang, S. Yang, S. Jiang, R. Wang, and X. Li, “Novel prediction strategies for dynamic multiobjective optimization,” IEEE Trans. Evol. Comput., vol. 24, no. 2, pp. 260–274, Apr. 2020. doi: 10.1109/TEVC.2019.2922834
|
| [60] |
M. Rong, D. Gong, Y. Zhang, Y. Jin, and W. Pedrycz, “Multidirectional prediction approach for dynamic multiobjective optimization problems,” IEEE Trans. Cybern., vol. 49, no. 9, pp. 3362–3374, Sep. 2019. doi: 10.1109/TCYB.2018.2842158
|
| [61] |
X. Ma, F. Liu, Y. Qi, X. Wang, L. Li, L. Jiao, M. Yin, and M. Gong, “A multiobjective evolutionary algorithm based on decision variable analyses for multiobjective optimization problems with large-scale variables,” IEEE Trans. Evol. Comput., vol. 20, no. 2, pp. 275–298, Apr. 2016. doi: 10.1109/TEVC.2015.2455812
|
| [62] |
X. Zhang, Y. Tian, R. Cheng, and Y. Jin, “A decision variable clustering-based evolutionary algorithm for large-scale many-objective optimization,” IEEE Trans. Evol. Comput., vol. 22, no. 1, pp. 97–112, Feb. 2018. doi: 10.1109/TEVC.2016.2600642
|
| [63] |
C. Yang, J. Ding, K. C. Tan, and Y. Jin, “Two-stage assortative mating for multi-objective multifactorial evolutionary optimization,” in Proc. IEEE 56th Annu. Conf. Decision and Control, Melbourne, Australia, 2017, pp. 76-81.
|
| [64] |
Q. Zhang, A. Zhou, and Y. Jin, “RM-MEDA: A regularity model-based multiobjective estimation of distribution algorithm,” IEEE Trans. Evol. Comput., vol. 12, no. 1, pp. 41–63, Feb. 2008. doi: 10.1109/TEVC.2007.894202
|
| [65] |
S. S. Vallender, “Calculation of the Wasserstein distance between probability distributions on the line,” Theory Probab. Its Appl., vol. 18, no. 4, pp. 784–786, Sep. 1974. doi: 10.1137/1118101
|
| [66] |
Y. Yuan, Y.-S. Ong, L. Feng, A. K. Qin, A. Gupta, B. Da, Q. Zhang, K. C. Tan, Y. Jin, and H. Ishibuchi, “Evolutionary multitasking for multiobjective continuous optimization: Benchmark problems, performance metrics and baseline results,” arXiv preprint arXiv: 1706.02766, 2017.
|
| [67] |
L. Feng, K. Qin, A. Gupta, Y. Yuan, Y.-S. Ong, and X. Chi, “IEEE CEC2019 Competition on Evolutionary Multi-Task Optimization,” 2019. [Online]. Available: http://www.bdsc.site/websites/MTO_competiton_2019/MTO_Competition_CEC_2019.html.
|
| [68] |
Y. Feng, L. Feng, S. Kwong, and K. C. Tan, “A multivariation multifactorial evolutionary algorithm for large-scale multiobjective optimization,” IEEE Trans. Evol. Comput., vol. 26, no. 2, pp. 248–262, Apr. 2022. doi: 10.1109/TEVC.2021.3119933
|
| [69] |
M. P. Fay and M. A. Proschan, “Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules,” Stat. Surv., vol. 4, no. 1, pp. 1–39, Feb. 2010.
|