Volume 12
Issue 11
IEEE/CAA Journal of Automatica Sinica
| Citation: | Y. Li, X. Wang, J. Shi, J. Liu, and C. Sun, “Quaternion-based modeling and predefined-time tracking control of a fully actuated autonomous underwater vehicle,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 11, pp. 2275–2285, Nov. 2025. doi: 10.1109/JAS.2025.125267 |
| [1] |
Y. R. Pétillot, G. Antonelli, G. Casalino, and F. Ferreira, “Underwater robots: From remotely operated vehicles to Intervention-Autonomous Underwater Vehicles,” IEEE Robotics and Autom. Magazine, vol. 26, no. 2, pp. 94–101, 2019.
|
| [2] |
C. Sun, C. Mu, W. Liu, and X. Wang, “Embodied cognitive intelligence framework of unmanned autonomous systems,” Science and Technology Review, vol. 42, no. 12, pp. 157–166, 2024.
|
| [3] |
J. Guo, Y. Lin, P. Lin, H. Li, H. Huang, and Y. Chen, “Study on hydrodynamic characteristics of the disk-shaped autonomous underwater helicopter over sea-beds,” Ocean Engineering, vol. 266, p. 113132, 2022. doi: 10.1016/j.oceaneng.2022.113132
|
| [4] |
S. Wang, L. Chen, D. Gu, and H. Hu, “Cooperative localization of AUVs using moving horizon estimation,” IEEE/CAA J. Autom. Sinica, vol. 1, no. 1, pp. 68–76, 2014. doi: 10.1109/JAS.2014.7004622
|
| [5] |
J. Guo, D. Li, and B. He, “Intelligent collaborative navigation and control for AUV tracking,” IEEE Trans. Industrial Informatics, vol. 17, no. 3, pp. 1732–1741, 2021. doi: 10.1109/TII.2020.2994586
|
| [6] |
L. Qiao and W. Zhang, “Trajectory tracking control of AUVs via adaptive fast nonsingular integral terminal sliding mode control,” IEEE Trans. Industrial Informatics, vol. 16, no. 2, pp. 1248–1258, 2020. doi: 10.1109/TII.2019.2949007
|
| [7] |
J. Zhang, X. Xiang, W. Li, and Q. Zhang, “Adaptive neural control of flight-style AUV for subsea cable tracking under electromagnetic localization guidance,” IEEE/ASME Trans. Mechatronics, vol. 28, no. 5, pp. 2976–2987, 2023. doi: 10.1109/TMECH.2023.3256707
|
| [8] |
J. Song and X. He, “Robust state estimation and fault detection for autonomous underwater vehicles considering hydrodynamic effects,” Control Engineering Practice, vol. 135, p. 105497, 2023. doi: 10.1016/j.conengprac.2023.105497
|
| [9] |
J. Guerrero, A. Chemori, J. Torres, and V. Creuze, “STA-based design of an adaptive disturbance observer for autonomous underwater vehicles: From concept to real-time validation,” Control Engineering Practice, vol. 144, p. 105831, 2024. doi: 10.1016/j.conengprac.2023.105831
|
| [10] |
Y. Yang, “Spacecraft attitude determination and control: Quaternion based method,” Annual Reviews in Control, vol. 36, no. 2, pp. 198–219, 2012. doi: 10.1016/j.arcontrol.2012.09.003
|
| [11] |
Z. Zhang, Y. Xu, L. Wan, G. Chen, and Y. Cao, “Rotation matrix-based finite-time trajectory tracking control of AUV with output constraints and input quantization,” Ocean Engineering, vol. 293, p. 116570, 2024. doi: 10.1016/j.oceaneng.2023.116570
|
| [12] |
C. Zhu, B. Huang, Y. Su, Y. Zheng, and S. Zheng, “Finite-time rotation-matrix-based tracking control for autonomous underwater vehicle with input saturation and actuator faults,” Int. J. Robust and Nonlinear Control, vol. 32, no. 5, pp. 2925–2949, 2022. doi: 10.1002/rnc.5915
|
| [13] |
O.-E. Fjellstad and T. Fossen, “Position and attitude tracking of AUV’s: A quaternion feedback approach,” IEEE J. Oceanic Engineering, vol. 19, no. 4, pp. 512–518, 1994. doi: 10.1109/48.338387
|
| [14] |
Y. Xu, J. Liu, and C. Sun, “Quaternion-based single-vector feedback control for fully-actuated dish-shaped AUV,” Chinese J. Intelligent Science and Technology, vol. 4, no. 4, p. 513, 2022.
|
| [15] |
I.-L. G. Borlaug, K. Y. Pettersen, and J. T. Gravdahl, “Comparison of two second-order sliding mode control algorithms for an articulated intervention AUV: Theory and experimental results,” Ocean Engineering, vol. 222, p. 108480, 2021. doi: 10.1016/j.oceaneng.2020.108480
|
| [16] |
I.-L. G. Borlaug, K. Y. Pettersen, and J. T. Gravdahl, “Tracking control of an articulated intervention autonomous underwater vehicle in 6DOF using generalized super-twisting: Theory and experiments,” IEEE Trans. Control Systems Technology, vol. 29, no. 1, pp. 353–369, 2021. doi: 10.1109/TCST.2020.2977302
|
| [17] |
M. H. Khodayari and S. Balochian, “Modeling and control of autonomous underwater vehicle (AUV) in heading and depth attitude via self-adaptive fuzzy PID controller,” J. Marine Science and Technology, vol. 20, no. 3, pp. 559–578, 2015. doi: 10.1007/s00773-015-0312-7
|
| [18] |
S. Mahapatra and B. Subudhi, “Design of a steering control law for an autonomous underwater vehicle using nonlinear H∞ state feedback technique,” Nonlinear Dynamics, vol. 90, no. 2, pp. 837–854, 2017. doi: 10.1007/s11071-017-3697-5
|
| [19] |
B. Chen, J. Hu, Y. Zhao, and B. K. Ghosh, “Finite-time velocity-free rendezvous control of multiple AUV systems with intermittent communication,” IEEE Trans. Systems, Man, and Cybernetics: Systems, vol. 52, no. 10, pp. 6618–6629, 2022. doi: 10.1109/TSMC.2022.3148295
|
| [20] |
L. Qiao and W. Zhang, “Double-loop integral terminal sliding mode tracking control for UUVs with adaptive dynamic compensation of uncertainties and disturbances,” IEEE J. Oceanic Engineering, vol. 44, no. 1, pp. 29–53, 2019. doi: 10.1109/JOE.2017.2777638
|
| [21] |
F. Sedghi, M. M. Arefi, A. Abooee, and O. Kaynak, “Adaptive robust finite-time nonlinear control of a typical autonomous underwater vehicle with saturated inputs and uncertainties,” IEEE/ASME Trans. Mechatronics, vol. 26, no. 5, pp. 2517–2527, 2021. doi: 10.1109/TMECH.2020.3041613
|
| [22] |
B. Li, X. Gao, H. Huang, and H. Yang, “Improved adaptive twisting sliding mode control for trajectory tracking of an AUV subject to uncertainties,” Ocean Engineering, vol. 297, p. 116204, 2024. doi: 10.1016/j.oceaneng.2023.116204
|
| [23] |
J. Guerrero, A. Chemori, V. Creuze, J. Torres, and E. Campos, “Saturated STA-based sliding-mode tracking control of AUVs: Design, stability analysis, and experiments,” Ocean Engineering, vol. 301, p. 117560, 2024. doi: 10.1016/j.oceaneng.2024.117560
|
| [24] |
Y. Liu, H. Li, R. Lu, Z. Zuo, and X. Li, “An overview of finite/fixed-time control and its application in engineering systems,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 12, pp. 2106–2120, 2022. doi: 10.1109/JAS.2022.105413
|
| [25] |
J. Liu, J. Liu, Y. Wu, C. Mu, and C. Sun, “Aperiodically intermittent event-based fixed-time consensus tracking and its applications,” IEEE Trans. Autom. Science and Engineering, vol. 21, no. 4, pp. 5790–5801, 2024. doi: 10.1109/TASE.2023.3318832
|
| [26] |
Z. Gao and G. Guo, “Fixed-time sliding mode formation control of AUVs based on a disturbance observer,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 539–545, 2020. doi: 10.1109/JAS.2020.1003057
|
| [27] |
J. Zheng, L. Song, L. Liu, W. Yu, Y. Wang, and C. Chen, “Fixed-time sliding mode tracking control for autonomous underwater vehicles,” Applied Ocean Research, vol. 117, p. 102928, 2021. doi: 10.1016/j.apor.2021.102928
|
| [28] |
S. An, L. Wang, and Y. He, “Robust fixed-time tracking control for underactuated AUVs based on fixed-time disturbance observer,” Ocean Engineering, vol. 266, p. 112567, 2022. doi: 10.1016/j.oceaneng.2022.112567
|
| [29] |
G. Chen, Y. Liu, Z. Zhang, and Y. Xu, “Adaptive disturbance-observer-based continuous sliding mode control for small autonomous underwater vehicles in the trans-atlantic geotraverse hydrothermal field with trajectory modeling based on the path,” J. Marine Science and Technology, vol. 10, no. 6, p. 721, 2022.
|
| [30] |
H. Chen, G. Tang, S. Wang, W. Guo, and H. Huang, “Adaptive fixed-time backstepping control for three-dimensional trajectory tracking of underactuated autonomous underwater vehicles,” Ocean Engineering, vol. 275, p. 114109, 2023. doi: 10.1016/j.oceaneng.2023.114109
|
| [31] |
Y. Song, H. Ye, and F. L. Lewis, “Prescribed-time control and its latest developments,” IEEE Trans. Systems, Man, and Cybernetics: Systems, vol. 53, no. 7, pp. 4102–4116, 2023. doi: 10.1109/TSMC.2023.3240751
|
| [32] |
B. Ning, Q.-L. Han, and Z. Zuo, “Practical fixed-time consensus for integrator-type multi-agent systems: A time base generator approach,” Automatica, vol. 105, pp. 406–414, 2019. doi: 10.1016/j.automatica.2019.04.013
|
| [33] |
A. J. Muñoz-Vázquez, J. D. Sánchez-Torres, E. Jiménez-Rodríguez, and A. G. Loukianov, “Predefined-time robust stabilization of robotic manipulators,” IEEE/ASME Trans. Mechatronics, vol. 24, no. 3, pp. 1033–1040, 2019. doi: 10.1109/TMECH.2019.2906289
|
| [34] |
C. Wu, J. Yan, J. Shen, X. Wu, and B. Xiao, “Predefined-time attitude stabilization of receiver aircraft in aerial refueling,” IEEE Trans. Circuits and Systems II: Express Briefs, vol. 68, no. 10, pp. 3321–3325, 2021.
|
| [35] |
D. Ye, A.-M. Zou, and Z. Sun, “Predefined-time predefined-bounded attitude tracking control for rigid spacecraft,” IEEE Trans. Aerospace and Electronic Systems, vol. 58, no. 1, pp. 464–472, 2022. doi: 10.1109/TAES.2021.3103258
|
| [36] |
K. Li and Y. Li, “Adaptive predefined-time optimal tracking control for underactuated autonomous underwater vehicles,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 1083–1085, 2023. doi: 10.1109/JAS.2023.123153
|
| [37] |
T. Jiang, Y. Yan, and S.-H. Yu, “Adaptive sliding mode control for unmanned surface vehicles with predefined-time tracking performances,” J. Marine Science and Engineering, vol. 11, p. 1244, 2023. doi: 10.3390/jmse11061244
|
| [38] |
C.-D. Liang, M.-F. Ge, Z.-W. Liu, L. Wang, and J. H. Park, “Model-free cluster formation control of NMSVs with bounded inputs: A predefined-time estimator-based approach,” IEEE Trans. Intelligent Vehicles, vol. 8, no. 2, pp. 1731–1741, 2023. doi: 10.1109/TIV.2022.3182992
|
| [39] |
J. Liu, J. Shi, Y. Wu, X. Wang, and C. Sun, “Self-triggered predefined-time consensus tracking control of nonlinear multiple ground vehicles,” IEEE Trans. Vehicular Technology, vol. 73, no. 12, pp. 18031–18042, 2024. doi: 10.1109/TVT.2024.3432392
|
| [40] |
T. Fossen, Handbook of Marine Craft Hydrodynamics and Motion Control. Hoboken, NJ, USA: John Wiley & Sons, Ltd, 2011.
|
| [41] |
Y. Xu, J. Liu, J. Wang, and C. Sun, “P-V plane based active fault-tolerant control trajectory tracking for dish-shaped AUV against complete failure of multiple propellers,” IEEE Trans. Intelligent Vehicles, vol. 9, no. 12, pp. 7635−7645, 2024.
|
| [42] |
N. Gu, D. Wang, Z. Peng, J. Wang, and Q.-L. Han, “Advances in line-of-sight guidance for path following of autonomous marine vehicles: An overview,” IEEE Trans. Systems, Man, and Cybernetics: Systems, vol. 53, no. 1, pp. 12–28, 2023. doi: 10.1109/TSMC.2022.3162862
|
| [43] |
B. Zhang, D. Ji, S. Liu, X. Zhu, and W. Xu, “Autonomous underwater vehicle navigation: A review,” Ocean Engineering, vol. 273, p. 113861, 2023. doi: 10.1016/j.oceaneng.2023.113861
|
| [44] |
J. Yan, Z. Guo, X. Yang, X. Luo, and X. Guan, “Finite-time tracking control of autonomous underwater vehicle without velocity measurements,” IEEE Trans. Systems, Man, and Cybernetics: Systems, vol. 52, no. 11, pp. 6759–6773, 2022. doi: 10.1109/TSMC.2021.3095975
|
| [45] |
X. Chen, Q. Sun, H. Yu, and F. Hao, “Predefined-time practical consensus for multi-agent systems via event-triggered control,” J. the Franklin Institute, vol. 360, no. 3, pp. 2116–2132, 2023. doi: 10.1016/j.jfranklin.2023.01.001
|
| [46] |
J. Liu, J. Shi, Y. Wu, X. Wang, J. Sun, and C. Sun, “Event-based predefined-time second-order practical consensus with application to connected automated vehicles,” IEEE Trans. Intelligent Vehicles, vol. 8, no. 11, pp. 4524–4535, 2023. doi: 10.1109/TIV.2023.3306802
|
| [47] |
R. R. Nair, L. Behera, and S. Kumar, “Event-triggered finite-time integral sliding mode controller for consensus-based formation of multirobot systems with disturbances,” IEEE Trans. Control Systems Technology, vol. 27, no. 1, pp. 39–47, 2019. doi: 10.1109/TCST.2017.2757448
|
| [48] |
S. Wu, G. Radice, Y. Gao, and Z. Sun, “Quaternion-based finite time control for spacecraft attitude tracking,” Acta Astronautica, vol. 69, no. 1, pp. 48–58, 2011.
|
| [49] |
F. Wang, Y. Miao, C. Li, and I. Hwang, “Attitude control of rigid spacecraft with predefined-time stability,” J. the Franklin Institute, vol. 357, no. 7, pp. 4212–4221, 2020. doi: 10.1016/j.jfranklin.2020.01.001
|
| [50] |
J. Chen, F. Sun, and C. Hua, “Finite/fixed/predefined/exact time control: A unified framework,” Int. J. Systems Science, vol. 54, no. 5, pp. 977–990, 2023. doi: 10.1080/00207721.2022.2156768
|