A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 12 Issue 11
Nov.  2025

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 19.2, Top 1 (SCI Q1)
    CiteScore: 28.2, Top 1% (Q1)
    Google Scholar h5-index: 95, TOP 5
Turn off MathJax
Article Contents
J. Zhu, S. Yuan, L. Mou, J. Luo, and H. Pu, “Adaptive periodic disturbance compensation for continuous-time linear systems with input delays,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 11, pp. 2286–2299, Nov. 2025. doi: 10.1109/JAS.2025.125258
Citation: J. Zhu, S. Yuan, L. Mou, J. Luo, and H. Pu, “Adaptive periodic disturbance compensation for continuous-time linear systems with input delays,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 11, pp. 2286–2299, Nov. 2025. doi: 10.1109/JAS.2025.125258

Adaptive Periodic Disturbance Compensation for Continuous-Time Linear Systems With Input Delays

doi: 10.1109/JAS.2025.125258
Funds:  This work was supported in part by the National Natural Science Foundation of China (62325302, 62203076, 62103065, 62033001, 62303079), the China Postdoctoral Science Foundation (2021M700584), the Natural Science Foundation of Chongqing, China (cstc2020jcyj-zdxmX0014), and the Program of Shanghai Academic/Technology Research Leader (21XD1421400)
More Information
  • Unknown time-varying periodic disturbances and input delays can degrade control performance and even lead to system instability. This paper presents a novel direct adaptive output feedback controller based on the internal model principle (IMP) to compensate for the unknown time-varying periodic disturbance in input delay systems. To reduce the design difficulty of the controller, the input delay system is equivalent to an input delay-free system by constructing stable auxiliary systems. Next, all the stabilizing controllers of the input delay system are derived by using the Youla parameterization method. Based on the IMP, an interpolation condition to completely compensate for periodic disturbances is formulated. Then, to compensate for the unknown time-varying periodic disturbance, a parameter adaptive algorithm is designed to update the Q-parameters online. The convergence of adaptive algorithms is analyzed by the Lyapunov function theory. Simulation and experimental results validated the effectiveness of the proposed method.

     

  • loading
  • [1]
    Z. Zhang, Q. Fang, and X. Chen, “Adaptive stabilization of uncertain linear system with stochastic delay by PDE full-state feedback,” IEEE Trans. Autom. Control, vol. 69, no. 4, pp. 2437–2444, 2024. doi: 10.1109/TAC.2023.3306455
    [2]
    X. Yang, J. Yan, C. Hua, and X. Guan, “Position measurement based slave torque feedback control for teleoperation systems with time-varying communication delays,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 2, pp. 388–402, 2023. doi: 10.1109/JAS.2022.106076
    [3]
    B. Zheng, C. Song, and L. Liu, “Cyclic-pursuit-based circular formation control of mobile agents with limited communication ranges and communication delays,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 9, pp. 1860–1870, 2023. doi: 10.1109/JAS.2023.123576
    [4]
    H. Chu, L. Gao, D. Yue, and C. Dou, “Consensus of Lipschitz nonlinear multiagent systems with input delay via observer-based truncated prediction feedback,” IEEE Trans. Systems, Man, and Cybernetics: Systems, vol. 50, no. 10, pp. 3784–3794, 2019.
    [5]
    B. Zhou, “Input delay compensation of linear systems with both state and input delays by nested prediction,” Automatica, vol. 50, no. 5, pp. 1434–1443, 2014. doi: 10.1016/j.automatica.2014.03.010
    [6]
    V. Léchappé, E. Moulay, F. Plestan, A. Glumineau, and A. Chriette, “New predictive scheme for the control of LTI systems with input delay and unknown disturbances,” Automatica, vol. 52, pp. 179–184, 2015. doi: 10.1016/j.automatica.2014.11.003
    [7]
    J. Li, L. Zhang, S. Li, and J. Su, “A time delay estimation interpretation of extended state observer-based controller with application to structural vibration suppression,” IEEE Trans. Autom. Science and Engineering, vol. 21, no. 2, pp. 1965–1973, 2024. doi: 10.1109/TASE.2023.3253504
    [8]
    O. J. Smith, “A controller to overcome dead time,” ISA J., vol. 6, no. 2, pp. 28–33, 1959.
    [9]
    Z.-Y. Li, Y. Liu, and B. Zhou, “Differential flatness of single-input commensurate delay systems with applications to trajectory planning, tracking, and transformation to fully actuated systems,” IEEE Trans. Circuits and Systems I: Regular Papers, vol. 71, no. 8, pp. 3799–3809, 2024. doi: 10.1109/TCSI.2024.3374713
    [10]
    A.-G. Wu, G.-R. Duan, Y. Wang, and J. Zhang, “A model reduction approach for discrete-time linear time-variant systems with delayed inputs,” Science China Information Sciences, vol. 67, no. 4, p. 142201, 2024. doi: 10.1007/s11432-022-3766-3
    [11]
    S. Y. Yoon, L. Di, P. Anantachaisilp, and Z. Lin, “Truncated predictor feedback control for active magnetic bearing systems with input delay,” IEEE Trans. Control Systems Technology, vol. 24, no. 6, pp. 2182–2189, 2016. doi: 10.1109/TCST.2016.2521801
    [12]
    S. Shi, S. Xu, J. Gu, and Z. Zhang, “Robust exact predictive scheme for output-feedback control of input-delay systems with unmatched sinusoidal disturbances,” IEEE Trans. Systems, Man, and Cybernetics: Systems, vol. 51, no. 9, pp. 5357–5366, 2019.
    [13]
    H. Pu, J. Zhu, L. Mou, J. Zhao, Z. Wu, J. Luo, and S. Yuan, “Youla-parameterized adaptive switched control of a magnetic negative stiffness isolator,” IEEE Trans. Industrial Electronics, vol. 71, no. 9, pp. 11356–11365, 2024. doi: 10.1109/TIE.2023.3335458
    [14]
    J. She, K. Miyamoto, Q.-L. Han, M. Wu, H. Hashimoto, and Q.-G. Wang, “Generalized-extended-state-observer and equivalent-input-disturbance methods for active disturbance rejection: Deep observation and comparison,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 957–968, 2023. doi: 10.1109/JAS.2022.105929
    [15]
    L. Zhang, J. Gao, X. Chen, H. Tang, Y. Chen, Y. He, and Z. Yang, “A rapid vibration reduction method for macro-micro composite precision positioning stage,” IEEE Trans. Industrial Electronics, vol. 64, no. 1, pp. 401–411, 2016.
    [16]
    X. Han, G. Liu, Y. Le, B. Dong, and S. Zheng, “Unbalanced magnetic pull disturbance compensation of magnetic bearing systems in msccs,” IEEE Trans. Industrial Electronics, vol. 70, no. 4, pp. 4088–4097, 2023. doi: 10.1109/TIE.2022.3181406
    [17]
    S.-Y. Chen and M.-H. Song, “Energy-saving dynamic bias current control of active magnetic bearing positioning system using adaptive differential evolution,” IEEE Trans. Systems, Man, and Cybernetics: Systems, vol. 49, no. 5, pp. 942–953, 2019. doi: 10.1109/TSMC.2017.2691304
    [18]
    H. Ma, M. Chen, and Q. Wu, “Disturbance observer-based safe tracking control for unmanned helicopters with partial state constraints and disturbances,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 11, pp. 2056–2069, 2023. doi: 10.1109/JAS.2022.105938
    [19]
    I. Furtat, E. Fridman, and A. Fradkov, “Disturbance compensation with finite spectrum assignment for plants with input delay,” IEEE Trans. Autom. Control, vol. 63, no. 1, pp. 298–305, 2017.
    [20]
    R. Sanz, P. Garcia, and P. Albertos, “Enhanced disturbance rejection for a predictor-based control of LTI systems with input delay,” Automatica, vol. 72, pp. 205–208, 2016. doi: 10.1016/j.automatica.2016.05.019
    [21]
    Y. Deng, V. Léchappé, C. Zhang, E. Moulay, D. Du, F. Plestan, and Q.-L. Han, “Designing discrete predictor-based controllers for networked control systems with time-varying delays: Application to a visual servo inverted pendulum system,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 10, pp. 1763–1777, 2021.
    [22]
    R. Sanz, P. Garcia, Q.-C. Zhong, and P. Albertos, “Predictor-based control of a class of time-delay systems and its application to quadrotors,” IEEE Trans. Industrial Electronics, vol. 64, no. 1, pp. 459–469, 2016.
    [23]
    A.-G. Wu, Y. Wang, and Y. Zhang, “A parametric predictor for disturbance attenuation of discrete-time linear systems with input delays,” IEEE Trans. Cybernetics, vol. 54, no. 2, pp. 839–850, 2024. doi: 10.1109/TCYB.2022.3165120
    [24]
    Y. Du, W. Cao, J. She, M. Wu, M. Fang, and S. Kawata, “Disturbance rejection for input-delay system using observer-predictor-based output feedback control,” IEEE Trans. Industrial Informatics, vol. 16, no. 7, pp. 4489–4497, 2019.
    [25]
    C. K. Yuksel, J. Bušek, M. Anderle, T. Vyhlídal, and S.-I. Niculescu, “A distributed delay based controller for simultaneous periodic disturbance rejection and input-delay compensation,” Mechanical Systems and Signal Processing, vol. 197, p. 110364, 2023. doi: 10.1016/j.ymssp.2023.110364
    [26]
    A. A. Pyrkin and A. A. Bobtsov, “Adaptive controller for linear system with input delay and output disturbance,” IEEE Trans. Autom. Control, vol. 61, no. 12, pp. 4229–4234, 2016. doi: 10.1109/TAC.2015.2509428
    [27]
    A. Pyrkin, A. Smyshlyaev, N. Bekiaris-Liberis, and M. Krstic, “Rejection of sinusoidal disturbance of unknown frequency for linear system with input delay,” in Proc. American Control Conf. IEEE, 2010, pp. 5688−5693.
    [28]
    C. K. Yüksel, T. Vyhlídal, J. Bušek, M. Anderle, and S.-I. Niculescu, “Harmonic disturbance compensation of a system with long dead-time, design and experimental validation,” IEEE/ASME Trans. Mechatronics, vol. 28, no. 5, pp. 2864–2875, 2023. doi: 10.1109/TMECH.2023.3253727
    [29]
    Z. Wang, Y. Wang, and Z. Kowalczuk, “Adaptive optimal discrete-time output-feedback using an internal model principle and adaptive dynamic programming,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 1, pp. 131–140, 2024. doi: 10.1109/JAS.2023.123759
    [30]
    D. N. Gerasimov, V. O. Nikiforov, and A. V. Paramonov, “Adaptive disturbance compensation in delayed linear systems: Internal model approach,” in 2015 IEEE Conf. Control Applications (CCA). IEEE, 2015, pp. 1692−1696.
    [31]
    D. N. Gerasimov, A. V. Paramonov, and V. O. Nikiforov, “Algorithms of adaptive disturbance compensation in linear systems with arbitrary input delay,” Int. J. Control, vol. 93, no. 7, pp. 1596–1604, 2020. doi: 10.1080/00207179.2018.1521527
    [32]
    H. I. Basturk, “Cancellation of unmatched biased sinusoidal disturbances for unknown LTI systems in the presence of state delay,” Automatica, vol. 76, pp. 169–176, 2017. doi: 10.1016/j.automatica.2016.10.006
    [33]
    V. O. Nikiforov, A. V. Paramonov, and D. N. Gerasimov, “Adaptive control algorithms in mimo linear systems with control delay,” Autom. and Remote Control, vol. 81, pp. 1091–1106, 2020. doi: 10.1134/S0005117920060107
    [34]
    V. O. Nikiforov, “Observers of external deterministic disturbances. i. objects with known parameters,” Autom. and Remote Control, vol. 65, no. 10, pp. 1531–1541, 2004. doi: 10.1023/B:AURC.0000044264.74470.48
    [35]
    H. I. Basturk and M. Krstic, “Adaptive sinusoidal disturbance cancellation for unknown LTI systems despite input delay,” Automatica, vol. 58, pp. 131–138, 2015. doi: 10.1016/j.automatica.2015.05.013
    [36]
    F. Li, Z. Wu, F. Qian, T. Yue, and T. Xu, “Adaptive active noise feedforward compensation for exhaust ducts using a fir Youla parametrization,” Mechanical Systems and Signal Processing, vol. 170, p. 108803, 2022. doi: 10.1016/j.ymssp.2022.108803
    [37]
    F. Qian, F. Li, Z. Wu, T. Yue, and T. Xu, “Youla parameterized adaptive feedback attenuation against tonal and band-limited random noise in ductworks,” IEEE Trans. Industrial Electronics, vol. 69, no. 8, pp. 8274–8283, 2021.
    [38]
    Z. Wu and F. B. Amara, “Regulator synthesis for bimodal linear systems,” IEEE Trans. Autom. Control, vol. 56, no. 2, pp. 390–394, 2010.
    [39]
    F. Qian, H. Ding, Z. Wu, S. Guo, D. Fu, A. Iqbal, and S. Sivanandam, “Mimo Youla parameterized adaptive aberration correction based on magnetic fluid deformable mirror for liquid mirror telescope,” IEEE/ASME Trans. Mechatronics, vol. 29, no. 3, pp. 1749–1760, 2024. doi: 10.1109/TMECH.2023.3318004
    [40]
    L. Mirkin and N. Raskin, “Every stabilizing dead-time controller has an observer-predictor-based structure,” Automatica, vol. 39, no. 10, pp. 1747–1754, 2003. doi: 10.1016/S0005-1098(03)00182-1
    [41]
    L. Mirkin, “On the approximation of distributed-delay control laws,” Systems and Control Letters, vol. 51, no. 5, pp. 331–342, 2004.
    [42]
    R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge University press, 2012.
    [43]
    P. A. Ioannou and J. Sun, Robust Adaptive Control. PTR Prentice-Hall Upper Saddle River, NJ, 1996, vol. 1.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article Metrics

    Article views (12) PDF downloads(3) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return