Volume 12
Issue 12
IEEE/CAA Journal of Automatica Sinica
| Citation: | W. Huang, R. Wang, T. Zhang, S. Qi, and L. Wang, “Fuzzy constraint dominance strategy for constrainted multiobjective optimization problems with multiple constraints,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 12, pp. 2455–2472, Dec. 2025. doi: 10.1109/JAS.2025.125255 |
| [1] |
J. Wang, Y. Sun, Z. Zhang, and S. Gao, “Solving multitrip pickup and delivery problem with time windows and manpower planning using multiobjective algorithms,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 1134–1153, Jul. 2020. doi: 10.1109/JAS.2020.1003204
|
| [2] |
Y. Chen, R. Wang, M. Ming, S. Cheng, Y. Bao, W. Zhang, and C. Zhang, “Constraint multi-objective optimal design of hybrid renewable energy system considering load characteristics,” Complex Intell. Syst., vol. 8, no. 2, pp. 803–817, Apr. 2022. doi: 10.1007/s40747-021-00363-4
|
| [3] |
Y. Zhang, M. Fei, Q. Sun, D. Du, A. Rakić, and K. Li, “A multi-objective and multi-constraint optimization model for cyber-physical power systems considering renewable energy and electric vehicles,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 6, pp. 1498–1500, Jun. 2023. doi: 10.1109/JAS.2022.106037
|
| [4] |
R. Chai, A. Tsourdos, A. Savvaris, S. Chai, Y. Xia, and C. L. P. Chen, “Multiobjective overtaking maneuver planning for autonomous ground vehicles,” IEEE Trans. Cybern., vol. 51, no. 8, pp. 4035–4049, Aug. 2021. doi: 10.1109/TCYB.2020.2973748
|
| [5] |
R. Chai, A. Tsourdos, A. Savvaris, S. Chai, Y. Xia, and C. L. P. Chen, “Multiobjective optimal parking maneuver planning of autonomous wheeled vehicles,” IEEE Trans. Ind. Electron., vol. 67, no. 12, pp. 10809–10821, Dec. 2020. doi: 10.1109/TIE.2019.2962482
|
| [6] |
Y. Hua, Q. Liu, K. Hao, and Y. Jin, “A survey of evolutionary algorithms for multi-objective optimization problems with irregular Pareto fronts,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 2, pp. 303–318, Feb. 2021. doi: 10.1109/JAS.2021.1003817
|
| [7] |
Z. Cai and Y. Wang, “A multiobjective optimization-based evolutionary algorithm for constrained optimization,” IEEE Trans. Evol. Comput., vol. 10, no. 6, pp. 658–675, Dec. 2006. doi: 10.1109/TEVC.2006.872344
|
| [8] |
K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms. New York: USA: John Wiley & Sons, 2001.
|
| [9] |
C. A. C. Coello, “Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A survey of the state of the art,” Comput. Methods Appl. Mech. Eng., vol. 191, no. 11−12, pp. 1245–1287, Jan. 2002. doi: 10.1016/S0045-7825(01)00323-1
|
| [10] |
K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197, Apr. 2002. doi: 10.1109/4235.996017
|
| [11] |
C. M. Fonseca and P. J. Fleming, “Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation,” IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum., vol. 28, no. 1, pp. 26–37, Jan. 1998. doi: 10.1109/3468.650319
|
| [12] |
T. Takahama and S. Sakai, “Constrained optimization by the ε constrained differential evolution with an archive and gradient-based mutation,” in Proc. IEEE Congr. Evolutionary Computation, Barcelona, Spain, 2010, pp. 1−9.
|
| [13] |
T. Takahama and S. Sakai, “Efficient constrained optimization by the ε constrained adaptive differential evolution,” in Proc. IEEE Congr. Evolutionary Computation, Barcelona, Spain, 2010, pp. 1−8.
|
| [14] |
Y. G. Woldesenbet, G. G. Yen, and B. G. Tessema, “Constraint handling in multiobjective evolutionary optimization,” IEEE Trans. Evol. Comput., vol. 13, no. 3, pp. 514–525, Jun. 2009. doi: 10.1109/TEVC.2008.2009032
|
| [15] |
J. A. Joines and C. R. Houck, “On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA’s,” in Proc. 1st IEEE Conf. Evolutionary Computation. IEEE World Congr. Computational Intelligence, Orlando, USA, 1994, pp. 579−584.
|
| [16] |
M. A. Jan and R. A. Khanum, “A study of two penalty-parameterless constraint handling techniques in the framework of MOEA/D,” Appl. Soft Comput., vol. 13, no. 1, pp. 128–148, Jan. 2013. doi: 10.1016/j.asoc.2012.07.027
|
| [17] |
Y. Wang and Z. Cai, “Combining multiobjective optimization with differential evolution to solve constrained optimization problems,” IEEE Trans. Evol. Comput., vol. 16, no. 1, pp. 117–134, Feb. 2012. doi: 10.1109/TEVC.2010.2093582
|
| [18] |
Y. Tian, T. Zhang, J. Xiao, X. Zhang, and Y. Jin, “A coevolutionary framework for constrained multiobjective optimization problems,” IEEE Trans. Evol. Comput., vol. 25, no. 1, pp. 102–116, Feb. 2021. doi: 10.1109/TEVC.2020.3004012
|
| [19] |
K. Li, R. Chen, G. Fu, and X. Yao, “Two-archive evolutionary algorithm for constrained multiobjective optimization,” IEEE Trans. Evol. Comput., vol. 23, no. 2, pp. 303–315, Apr. 2019. doi: 10.1109/TEVC.2018.2855411
|
| [20] |
Z. Fan, W. Li, X. Cai, H. Li, C. Wei, Q. Zhang, K. Deb, and E. Goodman, “Push and pull search for solving constrained multi-objective optimization problems,” Swarm Evol. Comput., vol. 44, pp. 665–679, Feb. 2019. doi: 10.1016/j.swevo.2018.08.017
|
| [21] |
B. Tessema and G. G. Yen, “A self adaptive penalty function based algorithm for constrained optimization,” in Proc. IEEE Int. Conf. Evolutionary Computation. Vancouver, Canada, 2006, pp. 246−253.
|
| [22] |
W. Ning, B. Guo, Y. Yan, X. Wu, J. Wu, and D. Zhao, “Constrained multi-objective optimization using constrained non-dominated sorting combined with an improved hybrid multi-objective evolutionary algorithm,” Eng. Optim., vol. 49, no. 10, pp. 1645–1664, Jan. 2017. doi: 10.1080/0305215X.2016.1271661
|
| [23] |
Z. Ma, Y. Wang, and W. Song, “A new fitness function with two rankings for evolutionary constrained multiobjective optimization,” IEEE Trans. Syst. Man Cybern.: Syst., vol. 51, no. 8, pp. 5005–5016, Aug. 2021. doi: 10.1109/TSMC.2019.2943973
|
| [24] |
Z. Fan, W. Li, X. Cai, H. Huang, Y. Fang, Y. You, J. Mo, C. Wei, and E. Goodman, “An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible regions,” Soft Comput., vol. 23, no. 23, pp. 12491–12510, Dec. 2019. doi: 10.1007/s00500-019-03794-x
|
| [25] |
F. Ming, W. Gong, and Y. Jin, “Even search in a promising region for constrained multi-objective optimization,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 2, pp. 474–486, Feb. 2024. doi: 10.1109/JAS.2023.123792
|
| [26] |
K. Yu, J. Liang, B. Qu, Y. Luo, and C. Yue, “Dynamic selection preference-assisted constrained multiobjective differential evolution,” IEEE Trans. Syst. Man Cybern.: Syst., vol. 52, no. 5, pp. 2954–2965, May 2022. doi: 10.1109/TSMC.2021.3061698
|
| [27] |
Z. Ma and Y. Wang, “Shift-based penalty for evolutionary constrained multiobjective optimization and its application,” IEEE Trans. Cybern., vol. 53, no. 1, pp. 18–30, Jan. 2023. doi: 10.1109/TCYB.2021.3069814
|
| [28] |
Z.-Z. Liu and Y. Wang, “Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces,” IEEE Trans. Evol. Comput., vol. 23, no. 5, pp. 870–884, Oct. 2019. doi: 10.1109/TEVC.2019.2894743
|
| [29] |
Y. Tian, Y. Zhang, Y. Su, X. Zhang, K. C. Tan, and Y. Jin, “Balancing objective optimization and constraint satisfaction in constrained evolutionary multiobjective optimization,” IEEE Trans. Cybern., vol. 52, no. 9, pp. 9559–9572, Sept. 2022. doi: 10.1109/TCYB.2020.3021138
|
| [30] |
H. Ma, H. Wei, Y. Tian, R. Cheng, and X. Zhang, “A multi-stage evolutionary algorithm for multi-objective optimization with complex constraints,” Inf. Sci., vol. 560, pp. 68–91, Jun. 2021. doi: 10.1016/j.ins.2021.01.029
|
| [31] |
K. Qiao, J. Liang, Z. Liu, K. Yu, C. Yue, and B. Qu, “Evolutionary multitasking with global and local auxiliary tasks for constrained multi-objective optimization,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 10, pp. 1951–1964, Oct. 2023. doi: 10.1109/JAS.2023.123336
|
| [32] |
M. Ming, A. Trivedi, R. Wang, D. Srinivasan, and T. Zhang, “A dual-population-based evolutionary algorithm for constrained multiobjective optimization,” IEEE Trans. Evol. Comput., vol. 25, no. 4, pp. 739–753, Aug. 2021. doi: 10.1109/TEVC.2021.3066301
|
| [33] |
J. Zou, R. Sun, Y. Liu, Y. Hu, S. Yang, J. Zheng, and K. Li, “A multipopulation evolutionary algorithm using new cooperative mechanism for solving multiobjective problems with multiconstraint,” IEEE Trans. Evol. Comput., vol. 28, no. 1, pp. 267–280, Feb. 2024. doi: 10.1109/TEVC.2023.3260306
|
| [34] |
E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength Pareto evolutionary algorithm,” ETH Zurich, Comput. Eng. Netw. Lab., Zurich, Switzerland, TIK-Report 103, 2001.
|
| [35] |
Z. Ma and Y. Wang, “Evolutionary constrained multiobjective optimization: Test suite construction and performance comparisons,” IEEE Trans. Evol. Comput., vol. 23, no. 6, pp. 972–986, Dec. 2019. doi: 10.1109/TEVC.2019.2896967
|
| [36] |
Z. Fan, W. Li, X. Cai, H. Li, C. Wei, Q. Zhang, K. Deb, and E. Goodman, “Difficulty adjustable and scalable constrained multiobjective test problem toolkit,” Evol. Comput., vol. 28, no. 3, pp. 339–378, Sept. 2020. doi: 10.1162/evco_a_00259
|
| [37] |
Y. Tian, R. Cheng, X. Zhang, and Y. Jin, “MATLAB platform for evolutionary multi-objective optimization [educational forum],” IEEE Comput. Intell. Mag., vol. 12, no. 4, pp. 73–87, Nov. 2017. doi: 10.1109/MCI.2017.2742868
|
| [38] |
H. Jain and K. Deb, “An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: Handling constraints and extending to an adaptive approach,” IEEE Trans. Evol. Comput., vol. 18, no. 4, pp. 602–622, Aug. 2014. doi: 10.1109/TEVC.2013.2281534
|
| [39] |
A. Kumar, G. Wu, M. Z. Ali, Q. Luo, R. Mallipeddi, P. N. Suganthan, and S. Das, “A benchmark-suite of real-world constrained multi-objective optimization problems and some baseline results,” Swarm Evol. Comput., vol. 67, p. 100961, Dec. 2021. doi: 10.1016/j.swevo.2021.100961
|
| [40] |
M. G. Parsons and R. L. Scott, “Formulation of multicriterion design optimization problems for solution with scalar numerical optimization methods,” J. Ship Res., vol. 48, no. 1, pp. 61–76, Mar. 2004. doi: 10.5957/jsr.2004.48.1.61
|
| [41] |
G. Dhiman and V. Kumar, “Multi-objective spotted hyena optimizer: A multi-objective optimization algorithm for engineering problems,” Knowl.-Based Syst., vol. 150, pp. 175–197, Jun. 2018. doi: 10.1016/j.knosys.2018.03.011
|
| [42] |
A. Lambora, K. Gupta, and K. Chopra, “Genetic algorithm-a literature review,” in Proc. Int. Conf. Machine Learning, Big Data, Cloud and Parallel Computing, Faridabad, India, 2019, pp. 380−384.
|
| [43] |
K. Deb, R. B. Agrawal, “Simulated binary crossover for continuous search space,” Complex Syst., vol. 9, no. 2, pp. 115–148, 1995.
|
| [44] |
K. Deb, M. Goyal, “A combined genetic adaptive search (GeneAS) for engineering design,” Comput. Sci. Inf., vol. 26, no. 4, pp. 30–45, 1996.
|
| [45] |
W.-J. Yu, M. Shen, W.-N. Chen, Z.-H. Zhan, Y.-J. Gong, Y. Lin, O. Liu, and J. Zhang, “Differential evolution with two-level parameter adaptation,” IEEE Trans. Cybern., vol. 44, no. 7, pp. 1080–1099, Jul. 2014. doi: 10.1109/TCYB.2013.2279211
|
| [46] |
P. A. N. Bosman and D. Thierens, “The balance between proximity and diversity in multiobjective evolutionary algorithms,” IEEE Trans. Evol. Comput., vol. 7, no. 2, pp. 174–188, Apr. 2003. doi: 10.1109/TEVC.2003.810761
|
| [47] |
L. While, P. Hingston, L. Barone, and S. Huband, “A faster algorithm for calculating hypervolume,” IEEE Trans. Evol. Comput., vol. 10, no. 1, pp. 29–38, Feb. 2006. doi: 10.1109/TEVC.2005.851275
|
| [48] |
E. Zitzler, J. Knowles, and L. Thiele, “Quality assessment of Pareto set approximations,” in Multiobjective Optimization: Interactive and Evolutionary Approaches, J. Branke, K. Deb, K. Miettinen, and R. Słowiński, Eds. Berlin, Heidelberg, Germany: Springer, 2008, pp. 373−404.
|
| [49] |
J. Derrac, S. García, D. Molina, and F. Herrera, “A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms,” Swarm Evol. Comput., vol. 1, no. 1, pp. 3–18, Mar. 2011. doi: 10.1016/j.swevo.2011.02.002
|
| [50] |
C. He, R. Cheng, Y. Tian, X. Zhang, K. C. Tan, and Y. Jin, “Paired offspring generation for constrained large-scale multiobjective optimization,” IEEE Trans. Evol. Comput., vol. 25, no. 3, pp. 448–462, Jun. 2021. doi: 10.1109/TEVC.2020.3047835
|
| [51] |
R. Azzouz, S. Bechikh, L. B. Said, and W. Trabelsi, “Handling time-varying constraints and objectives in dynamic evolutionary multi-objective optimization,” Swarm Evol. Comput., vol. 39, pp. 222–248, Apr. 2018. doi: 10.1016/j.swevo.2017.10.005
|