A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 12 Issue 12
Dec.  2025

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 19.2, Top 1 (SCI Q1)
    CiteScore: 28.2, Top 1% (Q1)
    Google Scholar h5-index: 95, TOP 5
Turn off MathJax
Article Contents
W. Huang, R. Wang, T. Zhang, S. Qi, and L. Wang, “Fuzzy constraint dominance strategy for constrainted multiobjective optimization problems with multiple constraints,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 12, pp. 2455–2472, Dec. 2025. doi: 10.1109/JAS.2025.125255
Citation: W. Huang, R. Wang, T. Zhang, S. Qi, and L. Wang, “Fuzzy constraint dominance strategy for constrainted multiobjective optimization problems with multiple constraints,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 12, pp. 2455–2472, Dec. 2025. doi: 10.1109/JAS.2025.125255

Fuzzy Constraint Dominance Strategy for Constrainted Multiobjective Optimization Problems With Multiple Constraints

doi: 10.1109/JAS.2025.125255
Funds:  This work was supported by the Scientific Research Project of Xiang Jiang Lab (22XJ02003), the University Fundamental Research Fund (23-ZZCX-JDZ-28), the National Science Fund for Outstanding Young Scholars (62122093), the National Natural Science Foundation of China (72421002, 62403477), the Science and Technology Innovation Program of Hunan Province (ZC23112101-10), and the Hunan Natural Science Foundation Regional Joint Project (2023JJ50490)
More Information
  • Solving constrained multiobjective optimization problems (CMOPs) is a highly challenging work. Numerous complex nonlinear constraints significantly add to the complexity of CMOPs, resulting in an exceptionally intricate feasible region. Makes it difficult for the algorithm to search for the complete constraint PF. In addition, under the influence of multiple complex nonlinear constraints, the conventional calculation method of overall constraint violation is inefficient for assessing the quality of infeasible solutions, potentially misguiding the evolutionary direction of the population. In response to these challenges, this paper proposes the fuzzy constraint dominance strategy (FCDS). This novel approach facilitates nuanced comparisons of solutions to strike a better balance between objectives and constraints. The fuzzy constraint violation introduced in FCDS mitigates the misleading impact of complex nonlinear constraints. Moreover, FCDS divides the solution process of complex CMOP into multiple stages from easy to difficult, and uses adaptive methods to increase the difficulty level of the problem. Systematic experiments on four test suites and three real-world applications have conclusively demonstrated the superior competitiveness of FCDS against leading algorithms.

     

  • loading
  • [1]
    J. Wang, Y. Sun, Z. Zhang, and S. Gao, “Solving multitrip pickup and delivery problem with time windows and manpower planning using multiobjective algorithms,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 1134–1153, Jul. 2020. doi: 10.1109/JAS.2020.1003204
    [2]
    Y. Chen, R. Wang, M. Ming, S. Cheng, Y. Bao, W. Zhang, and C. Zhang, “Constraint multi-objective optimal design of hybrid renewable energy system considering load characteristics,” Complex Intell. Syst., vol. 8, no. 2, pp. 803–817, Apr. 2022. doi: 10.1007/s40747-021-00363-4
    [3]
    Y. Zhang, M. Fei, Q. Sun, D. Du, A. Rakić, and K. Li, “A multi-objective and multi-constraint optimization model for cyber-physical power systems considering renewable energy and electric vehicles,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 6, pp. 1498–1500, Jun. 2023. doi: 10.1109/JAS.2022.106037
    [4]
    R. Chai, A. Tsourdos, A. Savvaris, S. Chai, Y. Xia, and C. L. P. Chen, “Multiobjective overtaking maneuver planning for autonomous ground vehicles,” IEEE Trans. Cybern., vol. 51, no. 8, pp. 4035–4049, Aug. 2021. doi: 10.1109/TCYB.2020.2973748
    [5]
    R. Chai, A. Tsourdos, A. Savvaris, S. Chai, Y. Xia, and C. L. P. Chen, “Multiobjective optimal parking maneuver planning of autonomous wheeled vehicles,” IEEE Trans. Ind. Electron., vol. 67, no. 12, pp. 10809–10821, Dec. 2020. doi: 10.1109/TIE.2019.2962482
    [6]
    Y. Hua, Q. Liu, K. Hao, and Y. Jin, “A survey of evolutionary algorithms for multi-objective optimization problems with irregular Pareto fronts,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 2, pp. 303–318, Feb. 2021. doi: 10.1109/JAS.2021.1003817
    [7]
    Z. Cai and Y. Wang, “A multiobjective optimization-based evolutionary algorithm for constrained optimization,” IEEE Trans. Evol. Comput., vol. 10, no. 6, pp. 658–675, Dec. 2006. doi: 10.1109/TEVC.2006.872344
    [8]
    K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms. New York: USA: John Wiley & Sons, 2001.
    [9]
    C. A. C. Coello, “Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A survey of the state of the art,” Comput. Methods Appl. Mech. Eng., vol. 191, no. 11−12, pp. 1245–1287, Jan. 2002. doi: 10.1016/S0045-7825(01)00323-1
    [10]
    K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197, Apr. 2002. doi: 10.1109/4235.996017
    [11]
    C. M. Fonseca and P. J. Fleming, “Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation,” IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum., vol. 28, no. 1, pp. 26–37, Jan. 1998. doi: 10.1109/3468.650319
    [12]
    T. Takahama and S. Sakai, “Constrained optimization by the ε constrained differential evolution with an archive and gradient-based mutation,” in Proc. IEEE Congr. Evolutionary Computation, Barcelona, Spain, 2010, pp. 1−9.
    [13]
    T. Takahama and S. Sakai, “Efficient constrained optimization by the ε constrained adaptive differential evolution,” in Proc. IEEE Congr. Evolutionary Computation, Barcelona, Spain, 2010, pp. 1−8.
    [14]
    Y. G. Woldesenbet, G. G. Yen, and B. G. Tessema, “Constraint handling in multiobjective evolutionary optimization,” IEEE Trans. Evol. Comput., vol. 13, no. 3, pp. 514–525, Jun. 2009. doi: 10.1109/TEVC.2008.2009032
    [15]
    J. A. Joines and C. R. Houck, “On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA’s,” in Proc. 1st IEEE Conf. Evolutionary Computation. IEEE World Congr. Computational Intelligence, Orlando, USA, 1994, pp. 579−584.
    [16]
    M. A. Jan and R. A. Khanum, “A study of two penalty-parameterless constraint handling techniques in the framework of MOEA/D,” Appl. Soft Comput., vol. 13, no. 1, pp. 128–148, Jan. 2013. doi: 10.1016/j.asoc.2012.07.027
    [17]
    Y. Wang and Z. Cai, “Combining multiobjective optimization with differential evolution to solve constrained optimization problems,” IEEE Trans. Evol. Comput., vol. 16, no. 1, pp. 117–134, Feb. 2012. doi: 10.1109/TEVC.2010.2093582
    [18]
    Y. Tian, T. Zhang, J. Xiao, X. Zhang, and Y. Jin, “A coevolutionary framework for constrained multiobjective optimization problems,” IEEE Trans. Evol. Comput., vol. 25, no. 1, pp. 102–116, Feb. 2021. doi: 10.1109/TEVC.2020.3004012
    [19]
    K. Li, R. Chen, G. Fu, and X. Yao, “Two-archive evolutionary algorithm for constrained multiobjective optimization,” IEEE Trans. Evol. Comput., vol. 23, no. 2, pp. 303–315, Apr. 2019. doi: 10.1109/TEVC.2018.2855411
    [20]
    Z. Fan, W. Li, X. Cai, H. Li, C. Wei, Q. Zhang, K. Deb, and E. Goodman, “Push and pull search for solving constrained multi-objective optimization problems,” Swarm Evol. Comput., vol. 44, pp. 665–679, Feb. 2019. doi: 10.1016/j.swevo.2018.08.017
    [21]
    B. Tessema and G. G. Yen, “A self adaptive penalty function based algorithm for constrained optimization,” in Proc. IEEE Int. Conf. Evolutionary Computation. Vancouver, Canada, 2006, pp. 246−253.
    [22]
    W. Ning, B. Guo, Y. Yan, X. Wu, J. Wu, and D. Zhao, “Constrained multi-objective optimization using constrained non-dominated sorting combined with an improved hybrid multi-objective evolutionary algorithm,” Eng. Optim., vol. 49, no. 10, pp. 1645–1664, Jan. 2017. doi: 10.1080/0305215X.2016.1271661
    [23]
    Z. Ma, Y. Wang, and W. Song, “A new fitness function with two rankings for evolutionary constrained multiobjective optimization,” IEEE Trans. Syst. Man Cybern.: Syst., vol. 51, no. 8, pp. 5005–5016, Aug. 2021. doi: 10.1109/TSMC.2019.2943973
    [24]
    Z. Fan, W. Li, X. Cai, H. Huang, Y. Fang, Y. You, J. Mo, C. Wei, and E. Goodman, “An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible regions,” Soft Comput., vol. 23, no. 23, pp. 12491–12510, Dec. 2019. doi: 10.1007/s00500-019-03794-x
    [25]
    F. Ming, W. Gong, and Y. Jin, “Even search in a promising region for constrained multi-objective optimization,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 2, pp. 474–486, Feb. 2024. doi: 10.1109/JAS.2023.123792
    [26]
    K. Yu, J. Liang, B. Qu, Y. Luo, and C. Yue, “Dynamic selection preference-assisted constrained multiobjective differential evolution,” IEEE Trans. Syst. Man Cybern.: Syst., vol. 52, no. 5, pp. 2954–2965, May 2022. doi: 10.1109/TSMC.2021.3061698
    [27]
    Z. Ma and Y. Wang, “Shift-based penalty for evolutionary constrained multiobjective optimization and its application,” IEEE Trans. Cybern., vol. 53, no. 1, pp. 18–30, Jan. 2023. doi: 10.1109/TCYB.2021.3069814
    [28]
    Z.-Z. Liu and Y. Wang, “Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces,” IEEE Trans. Evol. Comput., vol. 23, no. 5, pp. 870–884, Oct. 2019. doi: 10.1109/TEVC.2019.2894743
    [29]
    Y. Tian, Y. Zhang, Y. Su, X. Zhang, K. C. Tan, and Y. Jin, “Balancing objective optimization and constraint satisfaction in constrained evolutionary multiobjective optimization,” IEEE Trans. Cybern., vol. 52, no. 9, pp. 9559–9572, Sept. 2022. doi: 10.1109/TCYB.2020.3021138
    [30]
    H. Ma, H. Wei, Y. Tian, R. Cheng, and X. Zhang, “A multi-stage evolutionary algorithm for multi-objective optimization with complex constraints,” Inf. Sci., vol. 560, pp. 68–91, Jun. 2021. doi: 10.1016/j.ins.2021.01.029
    [31]
    K. Qiao, J. Liang, Z. Liu, K. Yu, C. Yue, and B. Qu, “Evolutionary multitasking with global and local auxiliary tasks for constrained multi-objective optimization,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 10, pp. 1951–1964, Oct. 2023. doi: 10.1109/JAS.2023.123336
    [32]
    M. Ming, A. Trivedi, R. Wang, D. Srinivasan, and T. Zhang, “A dual-population-based evolutionary algorithm for constrained multiobjective optimization,” IEEE Trans. Evol. Comput., vol. 25, no. 4, pp. 739–753, Aug. 2021. doi: 10.1109/TEVC.2021.3066301
    [33]
    J. Zou, R. Sun, Y. Liu, Y. Hu, S. Yang, J. Zheng, and K. Li, “A multipopulation evolutionary algorithm using new cooperative mechanism for solving multiobjective problems with multiconstraint,” IEEE Trans. Evol. Comput., vol. 28, no. 1, pp. 267–280, Feb. 2024. doi: 10.1109/TEVC.2023.3260306
    [34]
    E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength Pareto evolutionary algorithm,” ETH Zurich, Comput. Eng. Netw. Lab., Zurich, Switzerland, TIK-Report 103, 2001.
    [35]
    Z. Ma and Y. Wang, “Evolutionary constrained multiobjective optimization: Test suite construction and performance comparisons,” IEEE Trans. Evol. Comput., vol. 23, no. 6, pp. 972–986, Dec. 2019. doi: 10.1109/TEVC.2019.2896967
    [36]
    Z. Fan, W. Li, X. Cai, H. Li, C. Wei, Q. Zhang, K. Deb, and E. Goodman, “Difficulty adjustable and scalable constrained multiobjective test problem toolkit,” Evol. Comput., vol. 28, no. 3, pp. 339–378, Sept. 2020. doi: 10.1162/evco_a_00259
    [37]
    Y. Tian, R. Cheng, X. Zhang, and Y. Jin, “MATLAB platform for evolutionary multi-objective optimization [educational forum],” IEEE Comput. Intell. Mag., vol. 12, no. 4, pp. 73–87, Nov. 2017. doi: 10.1109/MCI.2017.2742868
    [38]
    H. Jain and K. Deb, “An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: Handling constraints and extending to an adaptive approach,” IEEE Trans. Evol. Comput., vol. 18, no. 4, pp. 602–622, Aug. 2014. doi: 10.1109/TEVC.2013.2281534
    [39]
    A. Kumar, G. Wu, M. Z. Ali, Q. Luo, R. Mallipeddi, P. N. Suganthan, and S. Das, “A benchmark-suite of real-world constrained multi-objective optimization problems and some baseline results,” Swarm Evol. Comput., vol. 67, p. 100961, Dec. 2021. doi: 10.1016/j.swevo.2021.100961
    [40]
    M. G. Parsons and R. L. Scott, “Formulation of multicriterion design optimization problems for solution with scalar numerical optimization methods,” J. Ship Res., vol. 48, no. 1, pp. 61–76, Mar. 2004. doi: 10.5957/jsr.2004.48.1.61
    [41]
    G. Dhiman and V. Kumar, “Multi-objective spotted hyena optimizer: A multi-objective optimization algorithm for engineering problems,” Knowl.-Based Syst., vol. 150, pp. 175–197, Jun. 2018. doi: 10.1016/j.knosys.2018.03.011
    [42]
    A. Lambora, K. Gupta, and K. Chopra, “Genetic algorithm-a literature review,” in Proc. Int. Conf. Machine Learning, Big Data, Cloud and Parallel Computing, Faridabad, India, 2019, pp. 380−384.
    [43]
    K. Deb, R. B. Agrawal, “Simulated binary crossover for continuous search space,” Complex Syst., vol. 9, no. 2, pp. 115–148, 1995.
    [44]
    K. Deb, M. Goyal, “A combined genetic adaptive search (GeneAS) for engineering design,” Comput. Sci. Inf., vol. 26, no. 4, pp. 30–45, 1996.
    [45]
    W.-J. Yu, M. Shen, W.-N. Chen, Z.-H. Zhan, Y.-J. Gong, Y. Lin, O. Liu, and J. Zhang, “Differential evolution with two-level parameter adaptation,” IEEE Trans. Cybern., vol. 44, no. 7, pp. 1080–1099, Jul. 2014. doi: 10.1109/TCYB.2013.2279211
    [46]
    P. A. N. Bosman and D. Thierens, “The balance between proximity and diversity in multiobjective evolutionary algorithms,” IEEE Trans. Evol. Comput., vol. 7, no. 2, pp. 174–188, Apr. 2003. doi: 10.1109/TEVC.2003.810761
    [47]
    L. While, P. Hingston, L. Barone, and S. Huband, “A faster algorithm for calculating hypervolume,” IEEE Trans. Evol. Comput., vol. 10, no. 1, pp. 29–38, Feb. 2006. doi: 10.1109/TEVC.2005.851275
    [48]
    E. Zitzler, J. Knowles, and L. Thiele, “Quality assessment of Pareto set approximations,” in Multiobjective Optimization: Interactive and Evolutionary Approaches, J. Branke, K. Deb, K. Miettinen, and R. Słowiński, Eds. Berlin, Heidelberg, Germany: Springer, 2008, pp. 373−404.
    [49]
    J. Derrac, S. García, D. Molina, and F. Herrera, “A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms,” Swarm Evol. Comput., vol. 1, no. 1, pp. 3–18, Mar. 2011. doi: 10.1016/j.swevo.2011.02.002
    [50]
    C. He, R. Cheng, Y. Tian, X. Zhang, K. C. Tan, and Y. Jin, “Paired offspring generation for constrained large-scale multiobjective optimization,” IEEE Trans. Evol. Comput., vol. 25, no. 3, pp. 448–462, Jun. 2021. doi: 10.1109/TEVC.2020.3047835
    [51]
    R. Azzouz, S. Bechikh, L. B. Said, and W. Trabelsi, “Handling time-varying constraints and objectives in dynamic evolutionary multi-objective optimization,” Swarm Evol. Comput., vol. 39, pp. 222–248, Apr. 2018. doi: 10.1016/j.swevo.2017.10.005

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(7)

    Article Metrics

    Article views (9) PDF downloads(3) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return