IEEE/CAA Journal of Automatica Sinica
Citation: | J. Cheng, H. Chen, Z. Xue, Y. Huang, and Y. Zhang, “An online exploratory maximum likelihood estimation approach to adaptive Kalman filtering,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 1, pp. 228–254, Jan. 2025. doi: 10.1109/JAS.2024.125001 |
[1] |
R. E. Kalman, “A new approach to linear filtering and prediction problems,” J. Basic Eng., vol. 82, no. 1, pp. 35–45, Mar. 1960. doi: 10.1115/1.3662552
|
[2] |
K. Li, S. Zhao, B. Huang, and F. Liu, “Bayesian filtering for high-dimensional state-space models with state partition and error compensation,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 5, pp. 1239–1249, Apr. 2024. doi: 10.1109/JAS.2023.124137
|
[3] |
H. A. Patel and D. G. Thakore, “Moving object tracking using Kalman filter,” Int. J. Comput. Sci. Mobile Comput., vol. 2, no. 4, pp. 326–332, Apr. 2013.
|
[4] |
S. Wang, L. Chen, D. Gu, and H. Hu, “Cooperative localization of AUVs using moving horizon estimation,” IEEE/CAA J. Autom. Sinica, vol. 1, no. 1, pp. 68–76, Jan. 2014. doi: 10.1109/JAS.2014.7004622
|
[5] |
Y. Zheng, Q. Li, C. Wang, X. Wang, and L. Hu, “Multi-source adaptive selection and fusion for pedestrian dead reckoning,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 12, pp. 2174–2185, Dec. 2022. doi: 10.1109/JAS.2021.1004144
|
[6] |
B. Wu, J. Zhong, and C. Yang, “A visual-based gesture prediction framework applied in social robots,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 3, pp. 510–519, Mar. 2022. doi: 10.1109/JAS.2021.1004243
|
[7] |
Y. Yuan, X. Luo, M. Shang, and Z. Wang, “A Kalman-filter-incorporated latent factor analysis model for temporally dynamic sparse data,” IEEE Trans. Cybern., vol. 53, no. 9, pp. 5788–5801, Sep. 2023. doi: 10.1109/TCYB.2022.3185117
|
[8] |
D. Wu, X. Luo, Y. He, and M. Zhou, “A prediction-sampling-based multilayer-structured latent factor model for accurate representation to high-dimensional and sparse data,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 3, pp. 3845–3858, Mar. 2022.
|
[9] |
Z. Li, S. Li, and X. Luo, “Efficient industrial robot calibration via a novel unscented Kalman filter-incorporated variable step-size Levenberg– Marquardt algorithm,” IEEE Trans. Instrum. Meas., vol. 72, p. 2510012, Apr. 2023.
|
[10] |
W. Yang, S. Li, Z. Li, and X. Luo, “Highly accurate manipulator calibration via extended Kalman filter-incorporated residual neural network,” IEEE Trans. Ind. Inf., vol. 19, no. 11, pp. 10831–10841, Nov. 2023. doi: 10.1109/TII.2023.3241614
|
[11] |
J. Duník, O. Straka, O. Kost, and J. Havlík, “Noise covariance matrices in state-space models: a survey and comparison of estimation methods—Part I,” Int. J. Adapt. Control Signal Process., vol. 31, no. 11, pp. 1505–1543, Nov. 2017. doi: 10.1002/acs.2783
|
[12] |
M. Dorigo, G. Theraulaz, and V. Trianni, “Swarm robotics: Past, present, and future[point of view],” Proc. IEEE, vol. 109, no. 7, pp. 1152–1165, Jul. 2021. doi: 10.1109/JPROC.2021.3072740
|
[13] |
R. Mehra, “On the identification of variances and adaptive Kalman filtering,” IEEE Trans. Autom. Control, vol. 15, no. 2, pp. 175–184, Apr. 1970. doi: 10.1109/TAC.1970.1099422
|
[14] |
B. J. Odelson, M. R. Rajamani, and J. B. Rawlings, “A new autocovariance least-squares method for estimating noise covariances,” Automatica, vol. 42, no. 2, pp. 303–308, Feb. 2006. doi: 10.1016/j.automatica.2005.09.006
|
[15] |
J. Duník, O. Straka, and M. Šimandl, “On autocovariance least-squares method for noise covariance matrices estimation,” IEEE Trans. Autom. Control, vol. 62, no. 2, pp. 967–972, Feb. 2017. doi: 10.1109/TAC.2016.2571899
|
[16] |
J. Duník, O. Kost, and O. Straka, “Design of measurement difference autocovariance method for estimation of process and measurement noise covariances,” Automatica, vol. 90, pp. 16–24, Apr. 2018. doi: 10.1016/j.automatica.2017.12.040
|
[17] |
O. Kost, J. Duník, and O. Straka, “Measurement difference method: A universal tool for noise identification,” IEEE Trans. Autom. Control, vol. 68, no. 3, pp. 1792–1799, Mar. 2023. doi: 10.1109/TAC.2022.3160679
|
[18] |
W. Sun, P. Sun, and J. Wu, “An adaptive fusion attitude and heading measurement method of MEMS/GNSS based on covariance matching,” Micromachines, vol. 13, no. 10, p. 1787, Oct. 2022. doi: 10.3390/mi13101787
|
[19] |
K. Myers and B. Tapley, “Adaptive sequential estimation with unknown noise statistics,” IEEE Trans. Autom. Control, vol. 21, no. 4, pp. 520–523, Aug. 1976. doi: 10.1109/TAC.1976.1101260
|
[20] |
A. P. Sage and G. W. Husa, “Adaptive filtering with unknown prior statistics,” Joint Autom. Control Conf., vol. 7, pp. 760–769, Jan. 1969.
|
[21] |
X. Gao, D. You, and S. Katayama, “Seam tracking monitoring based on adaptive Kalman filter embedded Elman neural network during high-power fiber laser welding,” IEEE Trans. Ind. Electron., vol. 59, no. 11, pp. 4315–4325, Nov. 2012. doi: 10.1109/TIE.2012.2193854
|
[22] |
A. H. Mohamed and K. P. Schwarz, “Adaptive Kalman filtering for INS/GPS,” J. Geod., vol. 73, no. 4, pp. 193–203, May 1999. doi: 10.1007/s001900050236
|
[23] |
W. Ding, J. Wang, C. Rizos, and D. Kinlyside, “Improving adaptive Kalman estimation in GPS/INS integration,” J. Navig., vol. 60, no. 3, pp. 517–529, Aug. 2007. doi: 10.1017/S0373463307004316
|
[24] |
W. Qi, W. Qin, and Z. Yun, “Closed-loop state of charge estimation of Li-ion batteries based on deep learning and robust adaptive Kalman filter,” Energy, vol. 307, p. 132805, Oct. 2024. doi: 10.1016/j.energy.2024.132805
|
[25] |
J. Chen, Y. Zhang, W. Li, W. Cheng, and Q. Zhu, “State of charge estimation for lithium-ion batteries using gated recurrent unit recurrent neural network and adaptive Kalman filter,” J. Energy Storage, vol. 55, p. 105396, Nov. 2022. doi: 10.1016/j.est.2022.105396
|
[26] |
J. J. Wang, W. Ding, and J. Wang, “Improving adaptive Kalman filter in GPS/SDINS integration with neural network,” in Proc. 20th Int. Technical Meeting of the Satellite Division of the Institute of Navigation, Fort Worth, USA, 2007, pp. 571–578.
|
[27] |
H. Zhou, Y. Zhao, X. Xiong, Y. Lou, and S. Kamal, “IMU dead-reckoning localization with RNN-IEKF algorithm,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Kyoto, Japan, 2022, pp. 11382–11387.
|
[28] |
F. Wu, H. Luo, H. Jia, F. Zhao, Y. Xiao, and X. Gao, “Predicting the noise covariance with a multitask learning model for Kalman filter-based GNSS/INS integrated navigation,” IEEE Trans. Instrum. Meas., vol. 70, p. 8500613, Sep. 2020.
|
[29] |
K. Xiong, C. Wei, and H. Zhang, “Q-learning for noise covariance adaptation in extended KALMAN filter,” Asian J. Control, vol. 23, no. 4, pp. 1803–1816, Jul. 2021. doi: 10.1002/asjc.2336
|
[30] |
X. Dai, H. Fourati, and C. Prieur, “A dynamic grid-based Q-learning for noise covariance adaptation in EKF and its application in navigation,” in Proc. 61st Conf. Decision and Control, Cancun, Mexico, 2022, pp. 4984–4989.
|
[31] |
X. R. Li and Y. Bar-Shalom, “A recursive multiple model approach to noise identification,” IEEE Trans. Aerosp. Electron. Syst., vol. 30, no. 3, pp. 671–684, Jul. 1994. doi: 10.1109/7.303738
|
[32] |
Y. Huang, Y. Zhang, Z. Wu, N. Li, and J. Chambers, “A novel adaptive Kalman filter with inaccurate process and measurement noise covariance matrices,” IEEE Trans. Autom. Control, vol. 63, no. 2, pp. 594–601, Feb. 2018. doi: 10.1109/TAC.2017.2730480
|
[33] |
Y. Huang, Y. Zhang, P. Shi, and J. Chambers, “Variational adaptive Kalman filter with Gaussian-inverse-Wishart mixture distribution,” IEEE Trans. Autom. Control, vol. 66, no. 4, pp. 1786–1793, Apr. 2021. doi: 10.1109/TAC.2020.2995674
|
[34] |
Y. Huang, F. Zhu, G. Jia, and Y. Zhang, “A slide window variational adaptive Kalman filter,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 67, no. 12, pp. 3552–3556, Dec. 2020.
|
[35] |
X. Dong, G. Battistelli, L. Chisci, and Y. Cai, “A variational Bayes moving horizon estimation adaptive filter with guaranteed stability,” Automatica, vol. 142, p. 110374, Aug. 2022. doi: 10.1016/j.automatica.2022.110374
|
[36] |
V. B. Tadic, “Analyticity, convergence, and convergence rate of recursive maximum-likelihood estimation in hidden Markov models,” IEEE Trans. Inf. Theory, vol. 56, no. 12, pp. 6406–6432, Dec. 2010. doi: 10.1109/TIT.2010.2081110
|
[37] |
S. Gibson and B. Ninness, “Robust maximum-likelihood estimation of multivariable dynamic systems,” Automatica, vol. 41, no. 10, pp. 1667–1682, Oct. 2005. doi: 10.1016/j.automatica.2005.05.008
|
[38] |
D.-J. Xin and L.-F. Shi, “Kalman filter for linear systems with unknown structural parameters,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 69, no. 3, pp. 1852–1856, Mar. 2021.
|
[39] |
Y. Liu, B. Lian, C. Tang, and J. Li, “Maximum likelihood principle based adaptive Extended Kalman filter for tightly coupled INS/UWB localization system,” in Proc. IEEE Int. Conf. Signal Processing, Communications and Computing, Xi’an, China, 2021, pp. 1–6.
|
[40] |
V. Z. B. Tadić and A. Doucet, “Asymptotic properties of recursive particle maximum likelihood estimation,” IEEE Trans. Inf. Theory, vol. 67, no. 3, pp. 1825–1848, Mar. 2021. doi: 10.1109/TIT.2020.3047761
|
[41] |
R. Mehra, “Approaches to adaptive filtering,” IEEE Trans. Autom. Control, vol. 17, no. 5, pp. 693–698, Oct. 1972. doi: 10.1109/TAC.1972.1100100
|
[42] |
R. Kashyap, “Maximum likelihood identification of stochastic linear systems,” IEEE Trans. Autom. Control, vol. 15, no. 1, pp. 25–34, Feb. 1970. doi: 10.1109/TAC.1970.1099344
|
[43] |
R. H. Shumway and D. S. Stoffer, “An approach to time series smoothing and forecasting using the EM algorithm,” J. Time Ser. Anal., vol. 3, no. 4, pp. 253–264, Jul. 1982. doi: 10.1111/j.1467-9892.1982.tb00349.x
|
[44] |
T. B. Schön, A. Wills, and B. Ninness, “System identification of nonlinear state-space models,” Automatica, vol. 47, no. 1, pp. 39–49, Jan. 2011. doi: 10.1016/j.automatica.2010.10.013
|
[45] |
V. A. Bavdekar, A. P. Deshpande, and S. C. Patwardhan, “Identification of process and measurement noise covariance for state and parameter estimation using extended Kalman filter,” J. Process Control, vol. 21, no. 4, pp. 585–601, Apr. 2011. doi: 10.1016/j.jprocont.2011.01.001
|
[46] |
Y. Huang, Y. Zhang, B. Xu, Z. Wu, and J. A. Chambers, “A new adaptive extended Kalman filter for cooperative localization,” IEEE Trans. Aerosp. Electron. Syst., vol. 54, no. 1, pp. 353–368, Feb. 2018. doi: 10.1109/TAES.2017.2756763
|
[47] |
C.-S. Hsieh, “Robust two-stage Kalman filters for systems with unknown inputs,” IEEE Trans. Autom. Control, vol. 45, no. 12, pp. 2374–2378, Dec. 2000. doi: 10.1109/9.895577
|
[48] |
X. Song and W. X. Zheng, “A Kalman-filtering derivation of input and state estimation for linear discrete-time systems with direct feedthrough,” Automatica, vol. 161, p. 111453, Mar. 2024. doi: 10.1016/j.automatica.2023.111453
|
[49] |
H. Benzerrouk and A. V. Nebylov, “Integrated navigation system INS/GNSS based on joint application of linear and nonlinear filtering,” IFAC Proc. Vol., vol. 45, no. 1, pp. 208–213, 2012. doi: 10.3182/20120213-3-IN-4034.00039
|
[50] |
N. Ganganath and H. Leung, “Mobile robot localization using odometry and kinect sensor,” in Proc. IEEE Int. Conf. Emerging Signal Processing Applications, Las Vegas, USA, 2012, pp. 91–94.
|
[51] |
R. Hunger, “Floating point operations in matrix-vector calculus,” Technische Universität München, Munich, Germany, 2007.
|
[52] |
K. Y. K. Leung, Y. Halpern, T. D. Barfoot, and H. H. T. Liu, “The UTIAS multi-robot cooperative localization and mapping dataset,” Int. J. Robot. Res., vol. 30, no. 8, pp. 969–974, Jul. 2011. doi: 10.1177/0278364911398404
|