Volume 12
Issue 11
IEEE/CAA Journal of Automatica Sinica
| Citation: | H. Wu, Y. Liu, M. Abdel-Aty, and W. Gui, “Predefined-time distributed optimization for resource allocation problems with time-varying objective function and constraints,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 11, pp. 2353–2355, Nov. 2025. doi: 10.1109/JAS.2024.124992 |
| [1] |
D. Wang, Z. Wang, C. Wen, and W. Wang, “Second-order Continuous-time algorithm for optimal resource allocation in power systems,” IEEE Trans. Industrial Inform., vol. 15, no. 2, pp. 626–637, 2018.
|
| [2] |
D. Yue, S. Baldi, J. Cao, Q. Li, and B. De Schutter, “Distributed adaptive resource allocation: An uncertain saddle-point dynamics viewpoint,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 12, pp. 2209–2221, 2023. doi: 10.1109/JAS.2023.123402
|
| [3] |
Q. Xu, C. Yu, X. Yuan, Z. Fu, and H. Liu, “A privacy-preserving distributed subgradient algorithm for the economic dispatch problem in smart grid,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 7, pp. 1625–1627, 2023. doi: 10.1109/JAS.2022.106028
|
| [4] |
Y. Ding, W. Ren, and Z. Meng, “Distributed optimal time-varying resource allocation for networked high-order systems,” IEEE Trans. Autom. Control, vol. 69, no. 9, pp. 5899–5914, 2024. doi: 10.1109/TAC.2024.3358099
|
| [5] |
B. Wang, S. Sun, and W. Ren, “Distributed continuous-time algorithms for optimal resource allocation with time-varying quadratic cost functions,” IEEE Trans. Control of Network Systems, vol. 7, no. 4, pp. 1974–1984, 2020. doi: 10.1109/TCNS.2020.3020972
|
| [6] |
C. Wu, H. Fang, X. Zeng, Q. Yang, Y. Wei, and J. Chen, “Distributed continuous-time algorithm for time-varying optimization with affine formation constraints,” IEEE Trans. Autom. Control, vol. 68, no. 4, pp. 2615–2622, 2022.
|
| [7] |
Y. Zheng, Q. Liu, and J. Wang, “A specified-time convergent multi-agent system for distributed optimization with a time-varying objective function,” IEEE Trans. Autom. Control, vol. 69, no. 2, pp. 1257–1264, 2024. doi: 10.1109/TAC.2023.3282065
|
| [8] |
Y. Liu, Z. Xia, and W. Gui, “Multi-objective distributed optimization via a predefined-time multi-agent approach,” IEEE Trans. Autom. Control, vol. 68, no. 11, pp. 6998–7005, 2023. doi: 10.1109/TAC.2023.3244122
|
| [9] |
A. K. Pal, S. Kamal, X. Yu, S. K. Nagar, and X. Xiong, “Free-will arbitrary time consensus for multiagent systems,” IEEE Trans. Cybern., vol. 52, no. 6, pp. 4636–4646, 2020.
|
| [10] |
B. Huang, Y. Liu, L. Glielmo, and W. Gui, “Fixed-time distributed robust optimization for economic dispatch with event-triggered intermittent control,” Science China Tech. Sciences, vol. 66, no. 5, pp. 1385–1396, 2023. doi: 10.1007/s11431-022-2352-9
|
| [11] |
D. Shevitz and B. Paden, “Lyapunov stability theory of nonsmooth systems,” IEEE Trans. Autom. Control, vol. 39, no. 9, pp. 1910–1914, 1994. doi: 10.1109/9.317122
|
| [12] |
F. Chen, Y. Cao, and W. Ren, “Distributed average tracking of multiple time-varying reference signals with bounded derivatives,” IEEE Trans. Autom. Control, vol. 57, no. 12, pp. 3169–3174, 2012. doi: 10.1109/TAC.2012.2199176
|
| [13] |
B. Huang, Y. Zou, Z. Meng, and W. Ren, “Distributed time-varying convex optimization for a class of nonlinear multiagent systems,” IEEE Trans. Autom. Control, vol. 65, no. 2, pp. 801–808, 2019.
|
| [14] |
H. Lakshmanan and D. P. De Farias, “Decentralized resource allocation in dynamic networks of agents,” SIAM J. Optimization, vol. 19, no. 2, pp. 911–940, 2008. doi: 10.1137/060662228
|
| [15] |
B. Huang, Y. Zou, F. Chen, and Z. Meng, “Distributed time-varying economic dispatch via a prediction-correction method,” IEEE Trans. Circuits and Systems I: Regular Papers, vol. 69, no. 10, pp. 4215–4224, 2022. doi: 10.1109/TCSI.2022.3185398
|
| [16] |
Y. Liu, Z. Qu, H. Xin, and D. Gan, “Distributed real-time optimal power flow control in smart grid,” IEEE Trans. Power Systems, vol. 32, no. 5, pp. 3403–3414, 2016.
|