IEEE/CAA Journal of Automatica Sinica
Citation: | R. Liu, Y. Hu, A. Mangini, and M. Fanti, “K-corruption intermittent attacks for violating the codiagnosability,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 1, pp. 159–172, Jan. 2025. doi: 10.1109/JAS.2024.124680 |
[1] |
W. Duo, M. Zhou, and A. Abusorrah, “A survey of cyber attacks on cyber physical systems: Recent advances and challenges,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 5, pp. 784–800, 2022. doi: 10.1109/JAS.2022.105548
|
[2] |
Z. Hu, R. Su, K. Zhang, Z. Xu, and R. Ma, “Resilient event-triggered model predictive control for adaptive cruise control under sensor attacks,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 3, pp. 807–809, 2023. doi: 10.1109/JAS.2023.123111
|
[3] |
X. Jin, W. M. Haddad, and T. Yucelen, “An adaptive control architecture for mitigating sensor and actuator attacks in cyber-physical systems,” IEEE Trans. Automatic Control, vol. 62, no. 11, pp. 6058–6064, 2017. doi: 10.1109/TAC.2017.2652127
|
[4] |
Y. Zhou, K. G. Vamvoudakis, W. M. Haddad, and Z.-P. Jiang, “A secure control learning framework for cyber-physical systems under sensor and actuator attacks,” IEEE Trans. Cybernetics, vol. 51, no. 9, pp. 4648–4660, 2020.
|
[5] |
D. Thorsley and D. Teneketzis, “Intrusion detection in controlled discrete event systems,” in Proc. 45th IEEE Conf. Decision and Control, 2006, pp. 6047–6054.
|
[6] |
L. K. Carvalho, Y.-C. Wu, R. Kwong, and S. Lafortune, “Detection and mitigation of classes of attacks in supervisory control systems,” Automatica, vol. 97, pp. 121–133, 2018. doi: 10.1016/j.automatica.2018.07.017
|
[7] |
R. Fritz and P. Zhang, “Detection and localization of stealthy cyberattacks in cyber-physical discrete event systems,” IEEE Trans. Automatic Control, vol. 68, no. 12, pp. 7895–7902, 2023. doi: 10.1109/TAC.2023.3253462
|
[8] |
R. Su, “Supervisor synthesis to thwart cyber attack with bounded sensor reading alterations,” Automatica, vol. 94, pp. 35–44, 2018. doi: 10.1016/j.automatica.2018.04.006
|
[9] |
L. Lin and R. Su, “Synthesis of covert actuator and sensor attackers,” Automatica, vol. 130, p. 109714, 2021. doi: 10.1016/j.automatica.2021.109714
|
[10] |
R. Tai, L. Lin, and R. Su, “Synthesis of optimal covert sensor-actuator attackers for discrete-event systems,” Automatica, vol. 151, p. 110910, 2023. doi: 10.1016/j.automatica.2023.110910
|
[11] |
R. Tai, L. Lin, Y. Zhu, and R. Su, “Synthesis of the supremal covert attacker against unknown supervisors by using observations,” IEEE Trans. Automatic Control, vol. 68, no. 6, pp. 3453–3468, 2022.
|
[12] |
R. Meira-Goes, E. Kang, R. H. Kwong, and S. Lafortune, “Synthesis x of sensor deception attacks at the supervisory layer of cyber-physical systems,” Automatica, vol. 121, p. 109172, 2020. doi: 10.1016/j.automatica.2020.109172
|
[13] |
J. Yao, S. Li, and X. Yin, “Sensor deception attacks against security in supervisory control systems,” Automatica, vol. 159, p. 111330, 2024. doi: 10.1016/j.automatica.2023.111330
|
[14] |
Q. Zhang, C. Seatzu, Z. Li, and A. Giua, “Selection of a stealthy and harmful attack function in discrete event systems,” Scientific Reports, vol. 12, no. 1, pp. 1–14, 2022. doi: 10.1038/s41598-021-99269-x
|
[15] |
Y. Li, C. N. Hadjicostis, N. Wu, and Z. Li, “Error-and tamper-tolerant state estimation for discrete event systems under cost constraints,” IEEE Trans. Automatic Control, vol. 68, no. 11, pp. 6743–6750, 2023. doi: 10.1109/TAC.2023.3239590
|
[16] |
M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis, “Diagnosability of discrete-event systems,” IEEE Trans. Automatic Control, vol. 40, no. 9, pp. 1555–1575, 1995. doi: 10.1109/9.412626
|
[17] |
S. Jiang, Z. Huang, V. Chandra, and R. Kumar, “A polynomial algorithm for testing diagnosability of discrete-event systems,” IEEE Trans. Automatic Control, vol. 46, no. 8, pp. 1318–1321, 2001. doi: 10.1109/9.940942
|
[18] |
T.-S. Yoo and S. Lafortune, “Polynomial-time verification of diagnosability of partially observed discrete-event systems,” IEEE Trans. Automatic Control, vol. 47, no. 9, pp. 1491–1495, 2002. doi: 10.1109/TAC.2002.802763
|
[19] |
G. Jiroveanu and R. K. Boel, “The diagnosability of Petri net models using minimal explanations,” IEEE Trans. Automatic Control, vol. 55, no. 7, pp. 1663–1668, 2010. doi: 10.1109/TAC.2010.2046106
|
[20] |
M. P. Cabasino, A. Giua, and C. Seatzu, “Diagnosability of discrete event systems using labeled Petri nets,” IEEE Trans. Automation Science and Engineering, vol. 11, no. 1, pp. 144–153, 2014. doi: 10.1109/TASE.2013.2289360
|
[21] |
M. P. Fanti and C. Seatzu, “Fault diagnosis and identification of discrete event systems using Petri nets,” in Proc. 9th Int. Workshop Discrete Event Systems, 2008, pp. 432–435.
|
[22] |
Z. Ma, X. Yin, and Z. Li, “Marking diagnosability verification in labeled Petri nets,” Automatica, vol. 131, p. 109713, 2021. doi: 10.1016/j.automatica.2021.109713
|
[23] |
F. Basile, P. Chiacchio, and G. De Tommasi, “On k-diagnosability of Petri nets via integer linear programming,” Automatica, vol. 48, no. 9, pp. 2047–2058, 2012. doi: 10.1016/j.automatica.2012.06.039
|
[24] |
A. Giua, S. Lafortune, and C. Seatzu, “Divergence properties of labeled Petri nets and their relevance for diagnosability analysis,” IEEE Trans. Automatic Control, vol. 65, no. 7, pp. 3092–3097, 2019.
|
[25] |
G. Zhu, Z. Li, and N. Wu, “Online verification of k-step opacity by Petri nets in centralized and decentralized structures,” Automatica, vol. 145, p. 110528, 2022. doi: 10.1016/j.automatica.2022.110528
|
[26] |
X. Cong, M. P. Fanti, A. M. Mangini, and Z. Li, “On-line verification of current-state opacity by Petri nets and integer linear programming,” Automatica, vol. 94, pp. 205–213, 2018. doi: 10.1016/j.automatica.2018.04.021
|
[27] |
X. Cong, M. P. Fanti, A. M. Mangini, and Z. Li, “Decentralized diagnosis by Petri nets and integer linear programming,” IEEE Trans. Systems, Man, and Cybernetics: Systems, vol. 48, no. 10, pp. 1689–1700, 2017.
|
[28] |
G. S. Viana, M. V. Moreira, and J. C. Basilio, “Codiagnosability analysis of discrete-event systems modeled by weighted automata,” IEEE Trans. Automatic Control, vol. 64, no. 10, pp. 4361–4368, 2019. doi: 10.1109/TAC.2019.2897268
|
[29] |
N. Ran, T. Li, Z. He, and C. Seatzu, “Codiagnosability enforcement in labeled Petri nets,” IEEE Trans. Automatic Control, vol. 68, no. 4, pp. 2436–2443, 2022.
|
[30] |
W. Qiu and R. Kumar, “Decentralized failure diagnosis of discrete event systems,” IEEE Trans. Systems, Man, and Cybernetics-Part A: Systems and Humans, vol. 36, no. 2, pp. 384–395, 2006. doi: 10.1109/TSMCA.2005.853503
|
[31] |
M. V. Moreira, T. C. Jesus, and J. C. Basilio, “Polynomial time verification of decentralized diagnosability of discrete event systems,” IEEE Trans. Automatic Control, vol. 56, no. 7, pp. 1679–1684, 2011. doi: 10.1109/TAC.2011.2124950
|
[32] |
R. Debouk, S. Lafortune, and D. Teneketzis, “Coordinated decentralized protocols for failure diagnosis of discrete event systems,” Discrete Event Dynamic Systems, vol. 10, no. 1, pp. 33–86, 2000.
|
[33] |
Y. C. Wu and S. Lafortune, “Synthesis of insertion functions for enforcement of opacity security properties,” Automatica, vol. 50, no. 5, pp. 1336–1348, 2014. doi: 10.1016/j.automatica.2014.02.038
|
[34] |
M. V. Alves, R. J. Barcelos, L. K. Carvalho, and J. C. Basilio, “Robust decentralized diagnosability of networked discrete event systems against dos and deception attacks,” Nonlinear Analysis: Hybrid Systems, vol. 44, p. 101162, 2022. doi: 10.1016/j.nahs.2022.101162
|
[35] |
V. d. S. L. Oliveira, F. G. Cabral, and M. V. Moreira, “K-loss robust codiagnosability of discrete-event systems,” Automatica, vol. 140, p. 110222, 2022. doi: 10.1016/j.automatica.2022.110222
|
[36] |
W. Dong, X. Yin, and S. Li, “A uniform framework for diagnosis of discrete-event systems with unreliable sensors using linear temporal logic,” IEEE Trans. Automatic Control, vol. 69, no. 1, pp. 145–160, 2023.
|
[37] |
J.-J. Yan and G.-H. Yang, “Adaptive fault estimation for cyber-physical systems with intermittent dos attacks,” Information Sciences, vol. 547, pp. 746–762, 2021. doi: 10.1016/j.ins.2020.08.086
|
[38] |
N. Ran, A. Giua, and C. Seatzu, “Enforcement of diagnosability in labeled Petri nets via optimal sensor selection,” IEEE Trans. Automatic Control, vol. 64, no. 7, pp. 2997–3004, 2018.
|
[39] |
Y. Hu, Z. Ma, Z. Li, and A. Giua, “Diagnosability enforcement in labeled Petri nets using supervisory control,” Automatica, vol. 131, p. 109776, 2021. doi: 10.1016/j.automatica.2021.109776
|
[40] |
C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems. Springer, 2008.
|
[41] |
X. Wang, H. Hu, and M. Zhou, “Discrete event approach to robust control in automated manufacturing systems,” IEEE Trans. Systems, Man, and Cybernetics: Systems, vol. 52, no. 1, pp. 123–135, 2020.
|
[42] |
D. You, O. Karoui, and S. Wang, “Computation of minimal siphons in Petri nets using problem partitioning approaches,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 2, pp. 329–338, 2021.
|
[43] |
A. M. Mangini and M. Roccotelli, “Innovative services for electric mobility based on virtual sensors and Petri nets,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 9, pp. 1845–1859, 2023. doi: 10.1109/JAS.2023.123699
|
[44] |
H. Lan, Y. Tong, and C. Seatzu, “Crucial states estimation in radio block center handover using Petri nets with unobservable transitions,” IEEE Trans. Automation Science and Engineering, vol. 19, no. 2, pp. 1268–1276, 2021.
|