IEEE/CAA Journal of Automatica Sinica
Citation: | D. Li, J. Huang, R. Law, X. Xu, L. Zhu, and E. Wu, “Interference suppression and jitter elimination ability-based adaption tracking guidance for robotic fishes,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 1, pp. 126–137, Jan. 2025. doi: 10.1109/JAS.2024.124632 |
[1] |
Y. Zhong, Z. Hong, Y. Li, and J. Yu, “A general kinematic model of fish locomotion enables robot fish to master multiple swimming motions,” IEEE Trans. Robot., vol. 40, pp. 750–763, 2024.
|
[2] |
T. J. K. Ng, N. Chen, and F. Zhang, “Snapp: An agile robotic fish with 3-d maneuverability for open water swim,” IEEE Robot. Autom. Lett., vol. 8, no. 10, pp. 6499–6506, Oct. 2023. doi: 10.1109/LRA.2023.3308015
|
[3] |
D. Li, B. Zhang, Y. Xiu, H. Deng, M. Zhang, W. Tong, R. Law, G. Zhu, E. Q. Wu, and L. Zhu, “Snake robots play an important role in social services and military needs,” Innovation, vol. 3, no. 6, p. 100333, Nov. 2022.
|
[4] |
S. Dai, Z. Wu, J. Wang, M. Tan, and J. Yu, “Barrier-based adaptive line-of-sight 3-D path-following system for a multijoint robotic fish with sideslip compensation,” IEEE Trans. Cybern., vol. 53, no. 7, pp. 4204–4217, Jul. 2023. doi: 10.1109/TCYB.2022.3155761
|
[5] |
Q. X. Wang, “The aerodynamics of a slender body moving very close to a water wave surface,” IMA J. Appl. Math., vol. 78, no. 2, pp. 307–337, Apr. 2013. doi: 10.1093/imamat/hxr051
|
[6] |
J. Wang and X. Tan, “Averaging tail-actuated robotic fish dynamics through force and moment scaling,” IEEE Trans. Robot., vol. 31, no. 4, pp. 906–917, Aug. 2015. doi: 10.1109/TRO.2015.2433539
|
[7] |
M. L. Castaño and X. Tan, “Model predictive control-based path-following for tail-actuated robotic fish,” J. Dyn. Syst. Meas., Control, vol. 141, no. 7, p. 071012, Jul. 2019. doi: 10.1115/1.4043152
|
[8] |
W. Wang, X. Dai, L. Li, B. H. Gheneti, Y. Ding, J. Yu, and G. Xie, “Three-dimensional modeling of a fin-actuated robotic fish with multimodal swimming,” IEEE/ASME Trans. Mech., vol. 23, no. 4, pp. 1641–1652, Aug. 2018. doi: 10.1109/TMECH.2018.2848220
|
[9] |
Q. Ren, J. Xu, and X. Li, “A data-driven motion control approach for a robotic fish,” J. Bionic Eng., vol. 12, no. 3, pp. 382–394, Sep. 2015. doi: 10.1016/S1672-6529(14)60130-X
|
[10] |
K. Nelson and K. Mohseni, “Hydrodynamic force decoupling using a distributed sensory system,” IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 3235–3242, Apr. 2020. doi: 10.1109/LRA.2020.2976331
|
[11] |
X. Liao, C. Zhou, Q. Zou, J. Wang, and B. Lu, “Dynamic modeling and performance analysis for a wire-driven elastic robotic fish,” IEEE Robot. Autom. Lett., vol. 7, no. 4, pp. 11174–11181, Oct. 2022. doi: 10.1109/LRA.2022.3197911
|
[12] |
J. Yu, J. Liu, Z. Wu, and H. Fang, “Depth control of a bioinspired robotic dolphin based on sliding-mode fuzzy control method,” IEEE Trans. Ind. Electron., vol. 65, no. 3, pp. 2429–2438, Mar. 2018. doi: 10.1109/TIE.2017.2745451
|
[13] |
M. L. Castaño and X. Tan, “Model predictive control-based path-following for tail-actuated robotic fish,” J. Dyn. Syst. Meas., Control, vol. 141, no. 7, pp. 071012, Jul. 2019.
|
[14] |
L. Shi, Y. Hu, S. Su, S. Guo, H. Xing, X. Hou, Y. Liu, Z. Chen, Z. Li, and D. Xia, “A fuzzy PID algorithm for a novel miniature spherical robots with three-dimensional underwater motion control,” J. Bionic Eng., vol. 17, no. 5, pp. 959–969, Aug. 2020. doi: 10.1007/s42235-020-0087-3
|
[15] |
K. Wang, W. Zou, R. Ma, Y. Wang, and H. Su, “Model predictive trajectory tracking control of an underactuated bionic underwater vehicle,” IEEE/ASME Trans. Mech., vol. 29, no. 3, pp. 1690–1701, Jun. 2024. doi: 10.1109/TMECH.2023.3312562
|
[16] |
Q. Li, G. Yang, F. Yu, and Y. Chen, “Adaptive fractional order non-singular terminal sliding mode controller for underwater soft crawling robots with parameter uncertainties and unknown disturbances,” Ocean Eng., vol. 271, p. 113728, Mar. 2023. doi: 10.1016/j.oceaneng.2023.113728
|
[17] |
C. Qiu, Z. Wu, J. Wang, M. Tan, and J. Yu, “Multiagent-reinforcement-learning-based stable path tracking control for a bionic robotic fish with reaction wheel,” IEEE Trans. Ind. Electron., vol. 70, no. 12, pp. 12670–12679, Dec. 2023. doi: 10.1109/TIE.2023.3239937
|
[18] |
S. Zhang, X. Qian, Z. Liu, Q. Li, and G. Li, “PDE modeling and tracking control for the flexible tail of an autonomous robotic fish,” IEEE Trans. Syst. Man Cybern. Syst., vol. 52, no. 12, pp. 7618–7627, Dec. 2022. doi: 10.1109/TSMC.2022.3147384
|
[19] |
W. Caharija, K. Pettersen, M. Bibuli, P. Calado, E. Zereik, J. Braga, J. T. Gravdahl, A. J. Sørensen, M. Milovanović, and G. Bruzzone, “Integral line-of-sight guidance and control of underactuated marine vehicles: Theory, simulations, and experiments,” IEEE Trans. Control Syst. Technol., vol. 24, no. 5, pp. 1623–1642, Sep. 2016. doi: 10.1109/TCST.2015.2504838
|
[20] |
T. I. Fossen, “An adaptive line-of-sight (ALOS) guidance law for path following of aircraft and marine craft,” IEEE Trans. Control Syst. Technol., vol. 31, no. 6, pp. 2887–2894, Nov. 2023. doi: 10.1109/TCST.2023.3259819
|
[21] |
W. Liu, H. Ye, and X. Yang, “Super-twisting sliding mode control for the trajectory tracking of underactuated USVs with disturbances,” J. Mar. Sci. Eng., vol. 11, no. 3, p. 636, Mar. 2023. doi: 10.3390/jmse11030636
|
[22] |
Y. Zheng, J. Tao, J. Hartikainen, F. Duan, H. Sun, M. Sun, Q. Sun, X. Zeng, Z. Chen, and G. Xie, “DDPG based LADRC trajectory tracking control for underactuated unmanned ship under environmental disturbances,” Ocean Eng., vol. 271, p. 113667, Mar. 2023. doi: 10.1016/j.oceaneng.2023.113667
|
[23] |
S. Wang, M. Sun, Y. Xu, J. Liu, and C. Sun, “Predictor-based fixed-time LOS path following control of underactuated USV with unknown disturbances,” IEEE Trans. Intell. Veh., vol. 8, no. 3, pp. 2088–2096, Mar. 2023. doi: 10.1109/TIV.2023.3245612
|
[24] |
D. Li, B. Zhang, P. Li, E. Q. Wu, R. Law, X. Xu, A. Song, and L.-M. Zhu, “Parameter estimation and anti-sideslip line-of-sight method-based adaptive path-following controller for a multijoint snake robot,” IEEE Trans. Syst. Man Cybern. Syst., vol. 53, no. 8, pp. 4776–4788, Aug. 2023. doi: 10.1109/TSMC.2023.3256383
|
[25] |
J. Yu, Z. Wu, X. Yang, Y. Yang, and P. Zhang, “Underwater target tracking control of an untethered robotic fish with a camera stabilizer,” IEEE Trans. Syst. Man Cybern. Syst., vol. 51, no. 10, pp. 6523–6534, Oct. 2021. doi: 10.1109/TSMC.2019.2963246
|
[26] |
B. Chen and H. Jiang, “Body stiffness variation of a tensegrity robotic fish using antagonistic stiffness in a kinematically singular configuration,” IEEE Trans. Robot., vol. 37, no. 5, pp. 1712–1727, Oct. 2021. doi: 10.1109/TRO.2021.3049430
|
[27] |
G. J. Yang and B. W. Choi, “Smooth trajectory planning along Bezier curve for mobile robots with velocity constraints,” Int. J. Control Autom., vol. 6, no. 2, pp. 225–234, Apr. 2013.
|
[28] |
M. Castaño and X. Tan, “Trajectory tracking control of rowing pectoral fin-actuated robotic fish,” IEEE/ASME Trans. Mech., vol. 27, no. 4, pp. 2007–2015, Aug. 2022. doi: 10.1109/TMECH.2022.3175765
|
[29] |
J. Nie, H. Wang, X. Lu, X. Lin, C. Sheng, Z. Zhang, and S. Song, “Finite-time output feedback path following control of underactuated MSV based on FTESO,” Ocean Eng., vol. 224, p. 108660, Mar. 2021. doi: 10.1016/j.oceaneng.2021.108660
|
[30] |
X. Bu, B. Jiang, and H. Lei, “Nonfragile quantitative prescribed performance control of waverider vehicles with actuator saturation,” IEEE Trans. Aerosp. Electron. Syst., vol. 58, no. 4, pp. 3538–3548, Aug. 2022. doi: 10.1109/TAES.2022.3153429
|
[31] |
D. Li, Y. Zhang, P. Li, R. Law, Z. Xiang, X. Xu, L. Zhu, and E. Q. Wu, “Position errors and interference prediction-based trajectory tracking for snake robots,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 9, pp. 1810–1821, Sep. 2023. doi: 10.1109/JAS.2023.123612
|
[32] |
D. Li, B. Zhang, R. Law, E. Q. Wu, and X. Xu, “Error constrained-formation path-following method with disturbance elimination for multisnake robots,” IEEE Trans. Ind. Electron., vol. 71, no. 5, pp. 4987–4998, May 2024. doi: 10.1109/TIE.2023.3288202
|
[33] |
Y. Xiu, D. Li, M. Zhang, H. Deng, R. Law, Y. Huang, E. Q. Wu, and X. Xu, “Finite-time sideslip differentiator-based LOS guidance for robust path following of snake robots,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 1, pp. 239–253, Jan. 2023. doi: 10.1109/JAS.2022.106052
|
[34] |
W. Sun and Q. Liu, “Hadamard type local fractional integral inequalities for generalized harmonically convex functions and applications,” Math. Method. Appl. Sci., vol. 43, no. 9, pp. 5776–5787, Jun. 2020. doi: 10.1002/mma.6319
|
[35] |
V. Azimi and P. A. Vela, “Robust adaptive quadratic programming and safety performance of nonlinear systems with unstructured uncertainties,” in Proc. IEEE Conf. Decision and Control, Miami, USA, 2018, pp. 5536–5543.
|
[36] |
G. Wang, W. Yang, Y. Shen, and H. Shao, “Adaptive path following of snake robot on ground with unknown and varied friction coefficients,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Madrid, Spain, 2018, pp. 7583–7588.
|