Citation:  Y. Zhang, Z. Liu, and Z. Chen, “A PI+R control scheme based on multiagent systems for economic dispatch in isolated BESSs,” IEEE/CAA J. Autom. Sinica, 2024. doi: 10.1109/JAS.2024.124236 
[1] 
P. Yong, A. Botterud, N. Zhang, and C. Kang, “Capacity value of uninterruptible power supply storage,” IEEE Trans. Power Systems, vol. 38, no. 2, pp. 1763–1766, Mar. 2023. doi: 10.1109/TPWRS.2022.3233773

[2] 
W. Wang, B. Yuan, Q. Sun, and R. Wennersten, “Application of energy storage in integrated energy systems — A solution to fluctuation and uncertainty of renewable energy,” Journal of Energy Storage, vol. 52, p. 104812, Aug. 2022. doi: 10.1016/j.est.2022.104812

[3] 
D. Solyali, B. Safaei, O. Zargar, and G. Aytac, “A comprehensive stateoftheart review of electrochemical battery storage systems for power grids,” Int. Journal of Energy Research, vol. 46, no. 13, pp. 17 786–17 812, Oct. 2022. doi: 10.1002/er.8451

[4] 
Y. Duan, X. He, and Y. Zhao, “Distributed algorithm based on consensus control strategy for dynamic economic dispatch problem,” Int. Journal of Electrical Power &Energy Systems, vol. 129, p. 106833, Jul. 2021.

[5] 
C. Ghanjati and S. Tnani, “Optimal sizing and energy management of a standalone photovoltaic/pumped storage hydropower/battery hybrid system using genetic algorithm for reducing cost and increasing reliability,” Energy &Environment, vol. 34, no. 6, pp. 2186–2203, Jul. 2022.

[6] 
Y. Yang, S. Bremner, C. Menictas, and M. Kay, “Modelling and optimal energy management for battery energy storage systems in renewable energy systems: A review,” Renewable and Sustainable Energy Reviews, vol. 167, p. 112671, Oct. 2022. doi: 10.1016/j.rser.2022.112671

[7] 
M. Rouholamini, C. Wang, H. Nehrir, X. Hu, Z. Hu, H. Aki, B. Zhao, Z. Miao, and K. Strunz, “A review of modeling, management, and applications of gridconnected liion battery storage systems,” IEEE Trans. Smart Grid, vol. 13, no. 6, pp. 4505–4524, Nov. 2022. doi: 10.1109/TSG.2022.3188598

[8] 
M. Wang, Y. Su, L. Chen, Z. Li, and S. Mei, “Distributed optimal power flow of DC microgrids: A penalty based ADMM approach,” CSEE Journal of Power and Energy Systems, vol. 7, no. 2, pp. 339–347, Mar. 2021.

[9] 
W. Li, Y. Liu, H. Liang, and Y. Shen, “A new distributed energy management strategy for smart grid with stochastic wind power,” IEEE Trans. Industrial Electronics, vol. 68, no. 2, pp. 1311–1321, Feb. 2021. doi: 10.1109/TIE.2020.2970627

[10] 
M. H. Hassan, E. H. Houssein, M. A. Mahdy, and S. Kamel, “An improved manta ray foraging optimizer for costeffective emission dispatch problems,” Engineering Applications of Artificial Intelligence, vol. 100, p. 104155, Apr. 2021. doi: 10.1016/j.engappai.2021.104155

[11] 
L. Wang, X. An, H. Xu, and Y. Zhang, “Multiagentbased collaborative regulation optimization for microgrid economic dispatch under a timebased price mechanism,” Electric Power Systems Research, vol. 213, p. 108760, Dec. 2022. doi: 10.1016/j.jpgr.2022.108760

[12] 
M. H. Ullah, B. Babaiahgari, A. Alseyat, and J.D. Park, “A computationally efficient consensusbased multiagent distributed ems for DC microgrids,” IEEE Trans. Industrial Electronics, vol. 68, no. 6, pp. 5425–5435, Jun. 2021. doi: 10.1109/TIE.2020.2992015

[13] 
A. Wang, W. Liu, T. Dong, X. Liao, and T. Huang, “DisEHPPC: Enabling heterogeneous privacypreserving consensusbased scheme for economic dispatch in smart grids,” IEEE Trans. Cybernetics, vol. 52, no. 6, pp. 5124–5135, Jun. 2022. doi: 10.1109/TCYB.2020.3027572

[14] 
X. Li, C. Dong, W. Jiang, and X. Wu, “Distributed control strategy for global economic operation and bus restorations in a hybrid AC/DC microgrid with interconnected subgrids,” Int. Journal of Electrical Power &Energy Systems, vol. 131, p. 107032, Oct. 2021.

[15] 
J. Peng, B. Fan, Z. Tu, W. Zhang, and W. Liu, “Distributed periodic eventtriggered optimal control of DC microgrids based on virtual incremental cost,” IEEE/CAA Journal of Automatica Sinica, vol. 9, no. 4, pp. 624–634, Apr. 2022. doi: 10.1109/JAS.2022.105452

[16] 
W. Chen and T. Li, “Distributed economic dispatch for energy internet based on multiagent consensus control,” IEEE Trans. Automatic Control, vol. 66, no. 1, pp. 137–152, Jan. 2021. doi: 10.1109/TAC.2020.2979749

[17] 
S. Song, R. A. McCann, and G. Jang, “Costbased adaptive droop control strategy for VSCMTDC system,” IEEE Trans. Power Systems, vol. 36, no. 1, pp. 659–669, Jan. 2021. doi: 10.1109/TPWRS.2020.3003589

[18] 
S. Sahoo and J. C.H. Peng, “A localized eventdriven resilient mechanism for cooperative microgrid against data integrity attacks,” IEEE Trans. Cybernetics, vol. 51, no. 7, pp. 3687–3698, Jul. 2021. doi: 10.1109/TCYB.2020.2989225

[19] 
M. Zaery, P. Wang, W. Wang, and D. Xu, “A novel fully distributed fixedtime optimal dispatch of DC multimicrogrids,” Int. Journal of Electrical Power &Energy Systems, vol. 129, p. 106792, Jul. 2021.

[20] 
Robert and R. Shoults, Power Generation, Operation, and Control. WileyBlackwell, Jul. 2013.

[21] 
Z. Tan, T. Cheng, Y. Liu, and H. Zhong, “Extensions of the locational marginal price theory in evolving power systems: A review,” IET Generation,Transmission &Distribution, vol. 16, no. 7, pp. 1277–1291, Apr. 2022.

[22] 
C. Yu, H. Zhou, X. Lu, and J. Lai, “Frequency synchronization and power optimization for microgrids with battery energy storage systems,” IEEE Trans. Control Systems Technology, vol. 29, no. 5, pp. 2247–2254, Sept. 2021. doi: 10.1109/TCST.2020.3025606

[23] 
D. Zhao, C. Zhang, X. Cao, C. Peng, B. Sun, K. Li, and Y. Li, “Differential privacy energy management for islanded microgrids with distributed consensusbased admm algorithm,” IEEE Trans. Control Systems Technology, vol. 31, no. 3, pp. 1018–1031, May 2022.

[24] 
S. Chen, Q. Gong, X. Lu, and J. Lai, “Distributed cooperative control for economic dispatch and SoC balance in DC microgrids with vanadium redox batteries,” Sustainable Energy,Grids and Networks, vol. 28, p. 100534, Dec. 2021. doi: 10.1016/j.segan.2021.100534

[25] 
R. Jin, C. Lu, and J. Song, “Manage distributed energy storage charging and discharging strategy: Models and algorithms,” IEEE Trans. Engineering Management, vol. 69, no. 3, pp. 755–764, Jun. 2022. doi: 10.1109/TEM.2020.3003306

[26] 
A. Banos and A. Barreiro, Reset Control Systems. Springer London Ltd, Oct. 2011.

[27] 
W. Hu, Y. Cheng, and Z. Chen, “Reset control for consensus of doubleintegrator multiagent systems,” Automatica, vol. 136, p. 110057, Feb. 2022. doi: 10.1016/j.automatica.2021.110057

[28] 
X. Meng, L. Xie, and Y. C. Soh, “Reset control for synchronization of multiagent systems,” Automatica, vol. 104, pp. 189–195, Jun. 2019. doi: 10.1016/j.automatica.2019.02.042

[29] 
Y. Zhang, Z. Liu, and Z. Chen, “A marginal cost consensus scheme with reset mechanism for distributed economic dispatch in BESSs,” IEEE Trans. Smart Grid, pp. 1–1, 2023.

[30] 
M. S. Hossain Lipu, S. Ansari, M. S. Miah, K. Hasan, S. T. Meraj, M. Faisal, T. Jamal, S. H. M. Ali, A. Hussain, K. M. Muttaqi, and M. A. Hannan, “A review of controllers and optimizations based scheduling operation for battery energy storage system towards decarbonization in microgrid: Challenges and future directions,” Journal of Cleaner Production, vol. 360, p. 132188, Aug. 2022. doi: 10.1016/j.jclepro.2022.132188

[31] 
Z. Lin, B. Francis, and M. Maggiore, “Necessary and sufficient graphical conditions for formation control of unicycles,” IEEE Trans. Automatic Control, vol. 50, no. 1, pp. 121–127, Jan. 2005. doi: 10.1109/TAC.2004.841121

[32] 
J. C. Clegg, “A nonlinear integrator for servomechanisms,” Transactions of the American Institute of Electrical Engineers,Part II: Applications and Industry, vol. 77, no. 1, pp. 41–42, Mar. 1958. doi: 10.1109/TAI.1958.6367399

[33] 
R. Zhang and B. Hredzak, “Distributed finitetime multiagent control for DC microgrids with time delays,” IEEE Trans. Smart Grid, vol. 10, no. 3, pp. 2692–2701, May 2019. doi: 10.1109/TSG.2018.2808467

[34] 
Z. Artstein, “Linear systems with delayed controls: A reduction,” IEEE Trans. Automatic Control, vol. 27, no. 4, pp. 869–879, Aug. 1982. doi: 10.1109/TAC.1982.1103023

[35] 
G. Chen and Z. Zhao, “Delay effects on consensusbased distributed economic dispatch algorithm in microgrid,” IEEE Trans. Power Systems, vol. 33, no. 1, pp. 602–612, Jan. 2018. doi: 10.1109/TPWRS.2017.2702179
