IEEE/CAA Journal of Automatica Sinica
Citation:  B. Zhu, X. Yuan, L. Dai, and Z. Qiang, “Finitetime stabilization for constrained discretetime systems by using model predictive control,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 7, pp. 1656–1666, Jul. 2024. doi: 10.1109/JAS.2024.124212 
In this paper, a model predictive control (MPC) framework is proposed for finitetime stabilization of linear and nonlinear discretetime systems subject to state and control constraints. The proposed MPC framework guarantees the finitetime convergence property by assigning the control horizon equal to the dimension of the overall system, and only penalizing the terminal cost in the optimization, where the stage costs are not penalized explicitly. A terminal inequality constraint is added to guarantee the feasibility and stability of the closedloop system. Initial feasibility can be improved via augmentation. The finitetime convergence of the proposed MPC is proved theoretically, and is supported by simulation examples.
[1] 
R. E. Kalman, “On the general theory of control systems,” IFAC Proc. Volumes, vol. 1, no. 1, pp. 491–502, 1960. doi: 10.1016/S14746670(17)700948

[2] 
X. Meng, H. Yu, J. Zhang, and K. Yan, “Optimized control strategy based on EPCH and DBMP algorithms for quadrupletank liquid level system,” J. Process Control, vol. 110, pp. 121–132, 2022. doi: 10.1016/j.jprocont.2021.12.008

[3] 
J. Chen, Y. Fan, M. Cheng, Q. Zhang, and Q. Chen, “Parameterfree ultralocal modelbased deadbeat predictive current control for PMVMS using finitetime gradient method,” IEEE Trans. Industrial Electronics, vol. 70, no. 6, pp. 5549–5559, 2023. doi: 10.1109/TIE.2022.3196367

[4] 
K. Yu, Z. Wang, W. Hua, and M. Cheng, “Robust cascaded deadbeat predictive control for dual threephase variableflux PMSM considering intrinsic delay in speed loop,” IEEE Trans. Industrial Electronics, vol. 69, no. 12, pp. 12107–12118, 2022. doi: 10.1109/TIE.2022.3142400

[5] 
B. Picasso, D. D. Vito, R. Scattolini, and P. Colaneri, “An MPC approach to the design of twolayer hierarchical control systems,” Automatica, vol. 46, no. 5, pp. 823–831, 2010. doi: 10.1016/j.automatica.2010.02.013

[6] 
A. Ansari and D. S. Bernstein, “Deadbeat unknowninput state estimation and input reconstruction for linear discretetime systems,” Automatica, vol. 103, pp. 11–19, 2019. doi: 10.1016/j.automatica.2019.01.011

[7] 
Q. C. Zhong, “Control of integral processes with dead time—Part 3: Deadbeat disturbance response,” IEEE Trans. Autom. Control, vol. 48, no. 1, pp. 153–159, 2003. doi: 10.1109/TAC.2002.806670

[8] 
B. Zhu, Z. Zheng, and X. Xia, “Constrained adaptive modelpredictive control for a class of discretetime linear systems with parametric uncertainties,” IEEE Trans. Autom. Control, vol. 65, no. 5, pp. 2223–2229, 2020. doi: 10.1109/TAC.2019.2939659

[9] 
K. Huang, K. Wei, F. Li, C. Yang, and W. Gui, “LSTMMPC: A deep learning based predictive control method for multimode process control,” IEEE Trans. Industrial Electronics, vol. 70, no. 11, pp. 11544–11554, 2023. doi: 10.1109/TIE.2022.3229323

[10] 
K. Huang, Z. Tao, Y. Liu, D. Wu, C. Yang, and W. Gui, “Errortriggered adaptive sparse identification for predictive control and its application to multiple operating conditions processes,” IEEE Trans. Neural Networks and Learning Systems, pp. 1–14, 2023.

[11] 
J. O’Reilly, “The discrete linear time invariant timeoptimal control problem—An overview,” Automatica, vol. 17, no. 2, pp. 363–370, 1981. doi: 10.1016/00051098(81)900534

[12] 
V. Kucera and M. Sebek, “On deadbeat controllers,” IEEE Trans. Autom. Control, vol. 29, no. 8, pp. 719–722, 1984. doi: 10.1109/TAC.1984.1103621

[13] 
B. Leden, “Deadbeat control and the riccati equation,” IEEE Trans. Autom. Control, vol. 21, no. 5, pp. 791–792, 1976. doi: 10.1109/TAC.1976.1101318

[14] 
F. Lewis, “A generalized inverse solution to the discretetime singular riccati equation,” IEEE Trans. Autom. Control, vol. 26, no. 2, pp. 395–398, 1981. doi: 10.1109/TAC.1981.1102599

[15] 
A. EmamiNaeini and G. Franklin, “Deadbeat control and tracking of discretetime systems,” IEEE Trans. Autom. Control, vol. 27, no. 1, pp. 176–181, 1982. doi: 10.1109/TAC.1982.1102818

[16] 
K. Sugimoto, A. Inoue, and S. Masuda, “A direct computation of state deadbeat feedback gains,” IEEE Trans. Autom. Control, vol. 38, no. 8, pp. 1283–1284, 1993. doi: 10.1109/9.233169

[17] 
W. M. Haddad and J. Lee, “Finitetime stability of discrete autonomous systems,” Automatica, vol. 122, p. 109282, 2020. doi: 10.1016/j.automatica.2020.109282

[18] 
S. E. Tuna, “State deadbeat control of nonlinear systems: Construction via sets,” Automatica, vol. 48, no. 9, pp. 2201–2206, 2012. doi: 10.1016/j.automatica.2012.06.017

[19] 
J. Wing and C. A. Desoer, “The multiple input minimal time regulator problem (general theory),” IEEE Trans. Autom. Control, vol. 8, no. 2, pp. 125–136, 1963. doi: 10.1109/TAC.1963.1105535

[20] 
S.W. Kang, J.H. Soh, and R.Y. Kim, “Symmetrical threevectorbased model predictive control with deadbeat solution for IPMSM in rotating reference frame,” IEEE Trans. Industrial Electronics, vol. 67, no. 1, pp. 159–168, 2019.

[21] 
J. Kreiss, M. Bodson, R. Delpoux, J.Y. Gauthier, J.F. Trégouët, and X. LinShi, “Optimal control allocation for the parallel interconnection of buck converters,” Control Engineering Practice, vol. 109, p. 104727, 2021. doi: 10.1016/j.conengprac.2021.104727

[22] 
P. Wang, Y. Bi, F. Gao, T. Song, and Y. Zhang, “An improved deadbeat control method for singlephase PWM rectifiers in charging system for evs,” IEEE Trans. Vehicular Technology, vol. 68, no. 10, pp. 9672–9681, 2019. doi: 10.1109/TVT.2019.2937653

[23] 
J.N. Juang and M. Phan, “Deadbeat predictive controllers,” Tech. Rep., 1997.

[24] 
J. M. Maciejowksi, “Predictive control with constraints,” Prentice Hall, 2000.

[25] 
C. V. Rao, “Sparsity of linear discretetime optimal control problems with l1 objectives,” IEEE Trans. Autom. Control, 2018.

[26] 
C. V. Rao and J. B. Rawlings, “Linear programming and model predictive control,” J. Process Control, vol. 10, no. 2, pp. 283–289, 2000.

[27] 
S. D. Cairano and A. Bemporad, “Model predictive control tuning by controller matching,” IEEE Trans. Autom. Control, vol. 55, no. 1, pp. 185–190, 2010. doi: 10.1109/TAC.2009.2033838

[28] 
X. Cheng and B. Krogh, “Stabilityconstrained model predictive control,” IEEE Trans. Autom. Control, vol. 46, no. 11, pp. 1816–1820, 2001. doi: 10.1109/9.964698

[29] 
X. Cheng and B. Krogh, “Stability constrained model predictive control for nonlinear systems,” in Proc. 36th IEEE Conf. Decision and Control, vol. 3, 1997, pp. 2091–2096.

[30] 
R. L. Sutherland, I. V. Kolmanovsky, A. R. Girard, F. A. Leve, and C. D. Petersen, “On closedloop lyapunov stability with minimumtime mpc feedback laws for discretetime systems,” in Proc. IEEE 58th Conf. Decision and Control. 2019, pp. 5231–5237.

[31] 
T. Cunis and I. Kolmanovsky, “Viability, viscosity, and storage functions in modelpredictive control with terminal constraints,” Automatica, vol. 131, p. 109748, 2021. doi: 10.1016/j.automatica.2021.109748

[32] 
F. Blanchini and S. Miani, SetTheoretic Methods in Control. Springer, 2008, vol. 78.

[33] 
W. M. Wonham, Linear Multivariable Control: A Geometric Approach. SpringerVerlag, 1974.

[34] 
L. Zhang, S. Zhuang, and R. D. Braatz, “Switched model predictive control of switched linear systems: Feasibility, stability and robustness,” Automatica, vol. 67, pp. 8–21, 2016. doi: 10.1016/j.automatica.2016.01.010

[35] 
E. ArandaBricaire, Ü. Kotta, and C. H. Moog, “Linearization of discretetime systems,” SIAM J. Control and Optimization, vol. 34, no. 6, pp. 1999–2023, 1996. doi: 10.1137/S0363012994267315

[36] 
J. Grizzle and P. Kokotovic, “Feedback linearization of sampleddata systems,” IEEE Trans. Autom. Control, vol. 33, no. 9, pp. 857–859, 1988. doi: 10.1109/9.1316

[37] 
G. Jayaraman and H. Chizeck, “Feedback linearization of discretetime systems,” in Proc. 32nd IEEE Conf. Decision and Control, 1993, pp. 2972–2977.

[38] 
P. Sun, S. Li, B. Zhu, Z. Zuo, and X. Xia, “Visionbased fixedtime uncooperative aerial target tracking for UAV,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 5, pp. 1322–1324, 2023. doi: 10.1109/JAS.2023.123510

[39] 
Z. Luo, B. Zhu, J. Zheng, and Z. Zheng, “Robust distributed model predictive control for formation tracking of nonholonomic vehicles,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 2, pp. 560–562, 2024.
