A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 11 Issue 6
Jun.  2024

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
P. Wu, H. Li, L. Hu, J. Ge, and N. Zeng, “A local-global attention fusion framework with tensor decomposition for medical diagnosis,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 6, pp. 1536–1538, Jun. 2024. doi: 10.1109/JAS.2023.124167
Citation: P. Wu, H. Li, L. Hu, J. Ge, and N. Zeng, “A local-global attention fusion framework with tensor decomposition for medical diagnosis,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 6, pp. 1536–1538, Jun. 2024. doi: 10.1109/JAS.2023.124167

A Local-Global Attention Fusion Framework With Tensor Decomposition for Medical Diagnosis

doi: 10.1109/JAS.2023.124167
More Information
  • loading
  • [1]
    L. Sun, Z. Liu, X. Sun, L. Liu, R. Lan, and X. Luo, “Lightweight image super-resolution via weighted multi-scale residual network,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 7, pp. 1271–1280, 2021. doi: 10.1109/JAS.2021.1004009
    [2]
    H. Li, N. Zeng, P. Wu, and K. Clawson, “Cov-Net: A computer-aided diagnosis method for recognizing COVID-19 from chest X-ray images via machine vision,” Expert Systems Applications, vol. 207, p. 118029, 2022.
    [3]
    H. Li, P. Wu, Z. Wang, J. Mao, F.-E. Alsaadi, and N. Zeng, “A generalized framework of feature learning enhanced convolutional neural network for pathology-image-oriented cancer diagnosis,” Computers in Biology and Medicine, vol. 151, p. 106265, 2023.
    [4]
    P. Wu, Z. Wang, B. Zheng, H. Li, F.-E. Alsaadi, and N. Zeng, “AGGN: Attention-based glioma grading network with multi-scale feature extraction and multi-modal information fusion,” Computers in Biology and Medicine, vol. 152, p. 106457, 2023.
    [5]
    Y. Lei, H. Zhu, J. Zhang, and H. Shan, “Meta ordinal regression forest for medical image classification with ordinal labels,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 7, pp. 1233–1247, 2022. doi: 10.1109/JAS.2022.105668
    [6]
    D. Wu and X. Luo, “Robust latent factor analysis for precise representation of high-dimensional and sparse data,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 4, pp. 796–805, 2021. doi: 10.1109/JAS.2020.1003533
    [7]
    X. Luo, Y. Yuan, S. Chen, N. Zeng, and Z. Wang, “Position-transitional particle swarm optimization-incorporated latent factor analysis,” IEEE Trans. Knowledge and Data Engineering, vol. 34, no. 8, pp. 3958–3970, 2022. doi: 10.1109/TKDE.2020.3033324
    [8]
    N. Zeng, P. Wu, Z. Wang, H. Li, W. Liu, and X. Liu, “A small-sized object detection oriented multi-scale feature fusion approach with application to defect detection,” IEEE Trans. Instrumentation and Measurement, vol. 71, p. 3507014, 2022.
    [9]
    L. Chen and X. Luo, “Tensor distribution regression based on the 3D conventional neural networks,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 7, pp. 1628–1630, 2023. doi: 10.1109/JAS.2023.123591
    [10]
    Q. Cheng, Y. Zhou, H. Huang, and Z. Wang, “Multi-attention fusion and fine-grained alignment for bidirectional image-sentence retrieval in remote sensing,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 8, pp. 1532–1535, 2022. doi: 10.1109/JAS.2022.105773
    [11]
    M. Guo, C. Lu, Z. Liu, M. Cheng, and S. Hu, “CSWin transformer: A general vision transformer backbone with cross-shaped windows,” in Proc. 35th IEEE/CVF Computer Vision and Pattern Recognition Conf., 2022, pp. 1–11.
    [12]
    Q. Wang, B. Wu, P. Zhu, P. Li, W. Zuo, and Q. Hu, “ECA-Net: Efficient channel attention for deep convolutional neural networks,” in Proc. 33rd IEEE/CVF Conf. Computer Vision and Pattern Recognition, 2020, pp. 11531–11539.
    [13]
    X. Li, Z. Zhong, J. Wu, Y. Yang, Z. Lin, and H. Liu, “Expectation-maximization attention networks for semantic segmentation”, in Proc. 23rd Int. Conf. Computer Vision, 2019.
    [14]
    G. Xu, X. Wang, and X. Xu, “Single image enhancement in sandstorm weather via tensor least square,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 6, pp. 1649–1661, 2020. doi: 10.1109/JAS.2020.1003423
    [15]
    F. Bi, X. Luo, B. Shen, H. Dong, and Z. Wang, “Proximal alternating-direction-method-of-multipliers-incorporated nonnegative latent factor analysis,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 6, pp. 1388–1406, 2023. doi: 10.1109/JAS.2023.123474
    [16]
    Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, “A ConvNet for the 2020s,” in Proc. 35th IEEE/CVF Conf. Computer Vision and Pattern Recognition, 2022, pp. 11966–11976.
    [17]
    L. Yuan, Y. Chen, T. Wang, W. Yu, Y. Shi, Z. Jiang, F. Tay, J. Feng, and S. Yan, “Tokens-to-Token ViT: Training vision transformers from scratch on ImageNet,” in Proc. 25th IEEE/CVF Int. Conf. Computer Vision, 2021, pp. 538–547.
    [18]
    K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv: 1409.1556, 2015.
    [19]
    Z. Peng, Z. Guo, W. Huang, Y. Wang, L. Xie, J. Jiao, Q. Tian, and Q. Ye, “Conformer: Local features coupling global representations for recognition and detection,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 45, no. 8, pp. 9454–9468, 2023. doi: 10.1109/TPAMI.2023.3243048
    [20]
    X. Huo, G. Sun, S. Tian, Y. Wang, L. Yu, J. Long, W. Zhang, and A. Li, “HiFuse: Hierarchical multi-scale feature fusion network for medical image classification,” arXiv preprint arXiv: 2209.10218, 2022.
    [21]
    N. Ma, X. Zhang, H. Zheng, and J. Sun, “ShuffleNet V2: Practical guidelines for efficient CNN architecture design,” in Proc. 15th European Conf. Computer Vision, 2018, vol. 11218, pp. 122–138.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(3)

    Article Metrics

    Article views (137) PDF downloads(28) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return