IEEE/CAA Journal of Automatica Sinica
Citation:  R. Zhao, J.e Feng, and D. Zhang, “Selftriggered set stabilization of Boolean control networks and its applications,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 7, pp. 1631–1642, Jul. 2024. doi: 10.1109/JAS.2023.124050 
Set stabilization is one of the essential problems in engineering systems, and selftriggered control (STC) can save the storage space for interactive information, and can be successfully applied in networked control systems with limited communication resources. In this study, the set stabilization problem and STC design of Boolean control networks are investigated via the semitensor product technique. On the one hand, the largest control invariant subset is calculated in terms of the strongly connected components of the state transition graph, by which a graphtheoretical condition for set stabilization is derived. On the other hand, a characteristic function is exploited to determine the triggering mechanism and feasible controls. Based on this, the minimumtime and minimumtriggering openloop, statefeedback and outputfeedback STCs for set stabilization are designed, respectively. As classic applications of selftriggered set stabilization, selftriggered synchronization, selftriggered output tracking and selftriggered output regulation are discussed as well. Additionally, several practical examples are given to illustrate the effectiveness of theoretical results.
[1] 
S. Kauffman, “Metabolic stability and epigenesis in randomly constructed genetic nets,” J. Theoretical Biology, vol. 22, no. 3, pp. 437–467, 1969. doi: 10.1016/00225193(69)900150

[2] 
H. Kitano, “Systems biology: A brief overview,” Science, vol. 295, no. 5560, pp. 1662–1664, 2002. doi: 10.1126/science.1069492

[3] 
D. Cheng, H. Qi, and Y. Zhao, An Introduction to SemiTensor Product of Matrices and Its Application. Singapore: World Scientific, 2011.

[4] 
X. Han, J. Wang, Z. Li, X. Chen, and Z. Chen, “Revisiting state estimation and weak detectability of discreteevent systems,” IEEE Trans. Autom. Science and Engineering, vol. 20, no. 1, pp. 662–674, 2022.

[5] 
G. Zhao, Y. Wang, and H. Li, “A matrix approach to the modeling and analysis of networked evolutionary games with time delays,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 4, pp. 818–826, 2018. doi: 10.1109/JAS.2016.7510259

[6] 
S. Gao, R. Wu, X. Wang, J. Liu, Q. Li, and X. Tang, “EFRCSTP: Encryption for face recognition based on the chaos and semitensor product theory,” Inform. Sciences, vol. 621, pp. 766–781, 2023. doi: 10.1016/j.ins.2022.11.121

[7] 
D. Cheng, H. Qi, Z. Li, and J. Liu, “Stability and stabilization of Boolean networks,” Int. J. Robust and Nonlinear Control, vol. 21, no. 2, pp. 134–156, 2011. doi: 10.1002/rnc.1581

[8] 
J. Liang, H. Chen, and Y. Liu, “On algorithms for state feedback stabilization of Boolean control networks,” Automatica, vol. 84, pp. 10–16, 2017. doi: 10.1016/j.automatica.2017.06.040

[9] 
H. Li and Y. Wang, “Further results on feedback stabilization control design of Boolean control networks,” Automatica, vol. 83, pp. 303–308, 2017. doi: 10.1016/j.automatica.2017.06.043

[10] 
Y. Guo, P. Wang, W. Gui, and C. Yang, “Set stability and set stabilization of Boolean control networks based on invariant subsets,” Automatica, vol. 61, pp. 106–112, 2015. doi: 10.1016/j.automatica.2015.08.006

[11] 
S. Zhu, J. Feng, and J. Zhao, “State feedback for set stabilization of Markovian jump Boolean control networks,” Discrete &Continuous Dynamical SystemsSeries S, vol. 14, no. 4, 2021.

[12] 
Y. Jia, B. Wang, J. Feng, and D. Cheng, “Set stabilization of Boolean control networks via outputfeedback controllers,” IEEE Trans. Systems,Man,and Cybern.: Systems, vol. 52, no. 12, pp. 7527–7536, 2022. doi: 10.1109/TSMC.2022.3158964

[13] 
R. Liu, J. Lu, W. Zheng, and J. Kurths, “Output feedback control for set stabilization of Boolean control networks,” IEEE Trans. Neural Networks and Learning Systems, vol. 31, no. 6, pp. 2129–2139, 2020. doi: 10.1109/TNNLS.2019.2928028

[14] 
S. Zhu, Y. Liu, J. Lou, J. Lu, and F. E. Alsaadi, “Sampleddata state feedback control for the set stabilization of Boolean control networks,” IEEE Trans. Systems,Man,and Cybern.: Systems, vol. 50, no. 4, pp. 1580–1589, 2020. doi: 10.1109/TSMC.2018.2852703

[15] 
Q. Zhang, J. Feng, B. Wang, and P. Wang, “Eventtriggered mechanism of designing set stabilization state feedback controller for switched Boolean networks,” Applied Math. and Computation, vol. 383, p. 125372, 2020. doi: 10.1016/j.amc.2020.125372

[16] 
S. Zhu, J. Lu, L. Sun, and J. Cao, “Distributed pinning set stabilization of largescale Boolean networks,” IEEE Trans. Autom. Control, vol. 68, no. 3, pp. 1886–1893, 2023. doi: 10.1109/TAC.2022.3169178

[17] 
Y. Liu, L. Sun, J. Lu, and J. Liang, “Feedback controller design for the synchronization of Boolean control networks,” IEEE Trans. Neural Networks and Learning Systems, vol. 27, no. 9, pp. 1991–1996, 2016. doi: 10.1109/TNNLS.2015.2461012

[18] 
X. Zhang, Y. Wang, and D. Cheng, “Output tracking of Boolean control networks,” IEEE Trans. Autom. Control, vol. 65, no. 6, pp. 2730–2735, 2020. doi: 10.1109/TAC.2019.2944903

[19] 
H. Li, L. Xie, and Y. Wang, “Output regulation of Boolean control networks,” IEEE Trans. Automatic Control, vol. 62, no. 6, pp. 2993–2998, 2017. doi: 10.1109/TAC.2016.2606600

[20] 
K. Zhang, Y. Liu, and J. Tan, “Finitetime stabilization of linear systems with input constraints by eventtriggered control,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 8, pp. 1516–1519, 2022. doi: 10.1109/JAS.2022.105761

[21] 
X. Wang, J. Sun, G. Wang, F. Allgower, and J. Chen, “Datadriven control of distributed eventtriggered network systems,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 2, pp. 351–364, 2023. doi: 10.1109/JAS.2023.123225

[22] 
K. E. Aarzen, “A simple eventbased PID controller,” IFAC Proceedings Volumes, vol. 32, pp. 8687–8692, 1999.

[23] 
M. Velasco, J. Fuertes, and P. Marti, “The self triggered task model for realtime control systems,” WorkinProgress Session 24th IEEE RealTime Systems Symposium, vol. 384, pp. 67–70, 2003.

[24] 
Y. Ju, D. Ding, X. He, Q.L. Han, and G. Wei, “Consensus control of multiagent systems using faultestimationintheloop: Dynamic eventtriggered case,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 8, pp. 1440–1451, 2022. doi: 10.1109/JAS.2021.1004386

[25] 
X. Ge, S. Xiao, Q.L. Han, X.M. Zhang, and D. Ding, “Dynamic eventtriggered scheduling and platooning control codesign for automated vehicles over vehicular adhoc networks,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 1, pp. 31–46, 2022. doi: 10.1109/JAS.2021.1004060

[26] 
Y. Su, Q. Wang, and C. Sun, “Selftriggered consensus control for linear multiagent systems with input saturation,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 150–157, 2020. doi: 10.1109/JAS.2019.1911837

[27] 
L. Lin, J. Cao, M. Abdel Aty, and U. A. Al Juboori, “Topological structure, reachability, and stabilization of constrained Boolean control networks via eventtriggered control,” IEEE Trans. Systems,Man,and Cybern.: Systems, vol. 51, no. 6, pp. 3565–3574, 2021. doi: 10.1109/TSMC.2019.2931363

[28] 
B. Chen, J. Cao, G. Lu, and L. Rutkowski, “Stabilization of Markovian jump Boolean control networks via event triggered control,” IEEE Trans. Autom. Control, vol. 68, no. 2, pp. 1215–1222, 2023. doi: 10.1109/TAC.2022.3151237

[29] 
Q. Zhu and W. Lin, “Stabilizing Boolean networks by optimal eventtriggered feedback control,” Systems &Control Lett., vol. 126, pp. 40–47, 2019.

[30] 
S. Zhu, J. Lu, L. Lin, and Y. Liu, “Minimumtime and minimumtriggering control for the observability of stochastic Boolean networks,” IEEE Trans. Autom. Control, vol. 67, no. 3, pp. 1558–1565, 2022. doi: 10.1109/TAC.2021.3069739

[31] 
L. Lin, J. Cao, and L. Rutkowski, “Robust eventtriggered control invariance of probabilistic Boolean control networks,” IEEE Trans. Neural Networks and Learning Systems, vol. 31, no. 3, pp. 1060–1065, 2020. doi: 10.1109/TNNLS.2019.2917753

[32] 
A. Acernese, A. Yerudkar, L. Glielmo, and C. Del Vecchio, “Modelfree selftriggered control codesign for probabilistic Boolean control networks,” IEEE Control Systems Lett., vol. 5, no. 5, pp. 1639–1644, 2020.

[33] 
M. Meng, G. Xiao, and D. Cheng, “Selftriggered scheduling for Boolean control networks,” IEEE Trans. Cybern., vol. 52, no. 9, pp. 8911–8921, 2022. doi: 10.1109/TCYB.2021.3052902

[34] 
P. Bajaria, A. Yerudkar, L. Glielmo, C. Del Vecchio, and Y. Wu, “Selftriggered control of probabilistic Boolean control networks: A reinforcement learning approach,” J. Franklin Institute, vol. 359, no. 12, pp. 6173–6195, 2022. doi: 10.1016/j.jfranklin.2022.06.004

[35] 
Y. Yu, M. Meng, J. Feng, and P. Wang, “Stabilizability analysis and switching signals design of switched Boolean networks,” Nonlinear Analysis: Hybrid Systems, vol. 30, pp. 31–44, 2018. doi: 10.1016/j.nahs.2018.04.004

[36] 
K. H. Rosen, Discrete Mathematics and Its Applications. New York, USA: McGrawHill, 1999.

[37] 
R. Tarjan, “Depthfirst search and linear graph algorithms,” SIAM J. Computing, vol. 1, no. 2, pp. 146–160, 1972. doi: 10.1137/0201010

[38] 
D. Laschov and M. Margaliot, “Minimumtime control of Boolean networks,” SIAM J. Control and Optimization, vol. 51, no. 4, pp. 2869–2892, 2013. doi: 10.1137/110844660

[39] 
P. Rössler and R. Höller, “Programmable logic deviceskey components for todays and tomorrows electronicbased systems,” Elektrotechnik UND Informationstechnik, vol. 137, pp. 45–51, 2020. doi: 10.1007/s0050201900781w

[40] 
J. Gao, S. Lin, J. Fan, and Y. Hu, “An average optimal control approach to the set stabilization problem for Boolean control networks,” Asian J. Control, vol. 21, no. 6, pp. 2596–2603, 2019. doi: 10.1002/asjc.2267

[41] 
L. Sun, J. Lu, J. Lou, and L. Li, “Set stabilization of Boolean networks via sampleddata control,” Asian J. Control, vol. 21, no. 6, pp. 2685–2690, 2019. doi: 10.1002/asjc.2114

[42] 
Y. Liu, L. Tong, J. Lou, J. Lu, and J. Cao, “Sampleddata control for the synchronization of Boolean control networks,” IEEE Trans. Cybern., vol. 49, no. 2, pp. 726–732, 2019. doi: 10.1109/TCYB.2017.2779781

[43] 
H. Li, Y. Liu, S. Wang, and B. Niu, “State feedback stabilization of largescale logical control networks via network aggregation,” IEEE Trans. Autom. Control, vol. 66, no. 12, pp. 6033–6040, 2021. doi: 10.1109/TAC.2021.3057139

[44] 
R. Li, Q. Zhang, and T. Chu, “Bisimulations of probabilistic Boolean networks,” SIAM J. Control and Optimization, vol. 60, no. 5, pp. 2631–2657, 2022. doi: 10.1137/21M1463471
