A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 10 Issue 7
Jul.  2023

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
W. H. Li, X. Y. Yao, K. W. Li, R. Wang, T. Zhang, and  L. Wang,  “Coevolutionary framework for generalized multimodal multi-objective optimization,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 7, pp. 1544–1556, Jul. 2023. doi: 10.1109/JAS.2023.123609
Citation: W. H. Li, X. Y. Yao, K. W. Li, R. Wang, T. Zhang, and  L. Wang,  “Coevolutionary framework for generalized multimodal multi-objective optimization,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 7, pp. 1544–1556, Jul. 2023. doi: 10.1109/JAS.2023.123609

Coevolutionary Framework for Generalized Multimodal Multi-Objective Optimization

doi: 10.1109/JAS.2023.123609
Funds:  This work was supported by the Open Project of Xiangjiang Laboratory (22XJ02003) and the National Natural Science Foundation of China (62122093, 72071205)
More Information
  • Most multimodal multi-objective evolutionary algorithms (MMEAs) aim to find all global Pareto optimal sets (PSs) for a multimodal multi-objective optimization problem (MMOP). However, in real-world problems, decision makers (DMs) may be also interested in local PSs. Also, searching for both global and local PSs is more general in view of dealing with MMOPs, which can be seen as generalized MMOPs. Moreover, most state-of-the-art MMEAs exhibit poor convergence on high-dimension MMOPs and are unable to deal with constrained MMOPs. To address the above issues, we present a novel multimodal multi-objective coevolutionary algorithm (CoMMEA) to better produce both global and local PSs, and simultaneously, to improve the convergence performance in dealing with high-dimension MMOPs. Specifically, the CoMMEA introduces two archives to the search process, and coevolves them simultaneously through effective knowledge transfer. The convergence archive assists the CoMMEA to quickly approach the Pareto optimal front. The knowledge of the converged solutions is then transferred to the diversity archive which utilizes the local convergence indicator and the ϵ-dominance-based method to obtain global and local PSs effectively. Experimental results show that CoMMEA is competitive compared to seven state-of-the-art MMEAs on fifty-four complex MMOPs.

     

  • loading
  • 11 Source code of CoMMEA and supplementary material can be found at https://github.com/Wenhua-Li/CoMMEA.
  • [1]
    W. H. Li, R. Wang, T. Zhang, M. J. Ming, and K. W. Li, “Rein-vestigation of evolutionary many-objective optimization: Focus on the Pareto knee front,” Inf. Sci., vol. 522, pp. 193–213, Jun. 2020. doi: 10.1016/j.ins.2020.03.007
    [2]
    K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Computat., vol. 6, no. 2, pp. 182–197, Apr. 2002. doi: 10.1109/4235.996017
    [3]
    Q. F. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm based on decomposition,” IEEE Trans. Evol. Computat., vol. 11, no. 6, pp. 712–731, Dec. 2007. doi: 10.1109/TEVC.2007.892759
    [4]
    R. Wang, R. C. Purshouse, and P. J. Fleming, “Preference-inspired coevolutionary algorithms for many-objective optimization,” IEEE Trans. Evol. Computat., vol. 17, no. 4, pp. 474–494, Aug. 2013. doi: 10.1109/TEVC.2012.2204264
    [5]
    G. Lapizco-Encinas, C. Kingsford, and J. Reggia, “Particle swarm optimization for multimodal combinatorial problems and its application to protein design,” in Proc. IEEE Congr. Evolutionary Computation, Barcelona, Spain, 2010, pp. 1–8.
    [6]
    A. Sakhovskiy and E. Tutubalina, “Multimodal model with text and drug embeddings for adverse drug reaction classification,” J. Biomed. Inf., vol. 135, p. 104182, Nov. 2022. doi: 10.1016/j.jbi.2022.104182
    [7]
    X. Y. Yao, W. H. Li, X. G. Pan, and R. Wang, “Multimodal multi-objective evolutionary algorithm for multiple path planning,” Comput. Ind. Eng., vol. 169, p. 108145, Jul. 2022. doi: 10.1016/j.cie.2022.108145
    [8]
    C. T. Yue, J. J. Liang, B. Y. Qu, K. J. Yu, and H. Song, “Multimodal multiobjective optimization in feature selection,” in Proc. IEEE Congr. Evolutionary Computation, Wellington, New Zealand, 2019, pp. 302–309.
    [9]
    T. Zhang, W. H. Li, and R. Wang, “Surrogated-assisted multimodal multi-objective optimization for hybrid renewable energy system,” Complex Intell. Syst., 2022. DOI: 10.1007/s40747-022-00943-y
    [10]
    W. H. Li, R. Wang, T. Zhang, M. J. Ming, and H. T. Lei, “Multi-scenario microgrid optimization using an evolutionary multi-objective algorithm,” Swarm Evol. Computat., vol. 50, p. 100570, Nov. 2019. doi: 10.1016/j.swevo.2019.100570
    [11]
    R. Tanabe and H. Ishibuchi, “A review of evolutionary multimodal multiobjective optimization,” IEEE Trans. Evol. Computat., vol. 24, no. 1, pp. 193–200, Feb. 2020. doi: 10.1109/TEVC.2019.2909744
    [12]
    C. Grimme, P. Kerschke, P. Aspar, H. Trautmann, M. Preuss, A. H. Deutz, H. Wang, and M. Emmerich, “Peeking beyond peaks: Challenges and research potentials of continuous multimodal multi-objective optimization,” Comput. Oper. Res., vol. 136, p. 105489, Dec. 2021. doi: 10.1016/j.cor.2021.105489
    [13]
    M. Javadi and S. Mostaghim, “Using neighborhood-based density measures for multimodal multi-objective optimization,” in Proc. 11th Int. Conf. Evolutionary Multi-Criterion Optimization, Shenzhen, China, 2021, pp. 335–345.
    [14]
    Q.-L. Dang, W. Xu, and Y.-F. Yuan, “A dynamic resource allocation strategy with reinforcement learning for multimodal multi-objective optimization,” Mach. Intell. Res., vol. 19, no. 2, pp. 138–152, 2022. doi: 10.1007/s11633-022-1314-7
    [15]
    Z. P. Li, J. Zou, S. X. Yang, and J. H. Zheng, “A two-archive algorithm with decomposition and fitness allocation for multi-modal multi-objective optimization,” Inf. Sci., vol. 574, pp. 413–430, Oct. 2021. doi: 10.1016/j.ins.2021.05.075
    [16]
    W. H. Li, X. Y. Yao, T. Zhang, R. Wang, and L. Wang, “Hierarchy ranking method for multimodal multiobjective optimization with local Pareto fronts,” IEEE Trans. Evol. Computat., vol. 27, no. 1, pp. 98–110, Feb. 2023. doi: 10.1109/TEVC.2022.3155757
    [17]
    W.-H. Li, M.-J. Ming, T. Zhang, R. Wang, S.-J. Huang, and L. Wang, “Multimodal multi-objective evolutionary algorithm considering global and local Pareto fronts,” Acta Autom. Sinica, vol. 49, no. 1, pp. 148–160, Jan. 2023.
    [18]
    W. H. Li, T. Zhang, R. Wang, S. J. Huang, and J. Liang, “Multimodal multi-objective optimization: Comparative study of the state-of-the-art,” Swarm Evol. Computat., vol. 77, p. 101253, Mar. 2023. doi: 10.1016/j.swevo.2023.101253
    [19]
    P. Loridan, “ε-solutions in vector minimization problems,” J. Optim. Theory Appl., vol. 43, no. 2, pp. 265–276, Jun. 1984. doi: 10.1007/BF00936165
    [20]
    K. Deb and S. Tiwari, “Omni-optimizer: A generic evolutionary algorithm for single and multi-objective optimization,” Eur. J. Oper. Res., vol. 185, no. 3, pp. 1062–1087, Mar. 2008. doi: 10.1016/j.ejor.2006.06.042
    [21]
    Y. P. Liu, H. Ishibuchi, Y. Nojima, N. Masuyama, and K. Shang, “A double-niched evolutionary algorithm and its behavior on polygon-based problems,” in Proc. 15th Int. Conf. Parallel Problem Solving from Nature, Coimbra, Portugal, 2018, pp. 262–273.
    [22]
    J. J. Liang, C. T. Yue, and B. Y. Qu, “Multimodal multi-objective optimization: A preliminary study,” in Proc. IEEE Congr. Evolutionary Computation, Vancouver, Canada, 2016, pp. 2454–2461.
    [23]
    C. T. Yue, B. Y. Qu, and J. Liang, “A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems,” IEEE Trans. Evol. Computat., vol. 22, no. 5, pp. 805–817, Oct. 2018. doi: 10.1109/TEVC.2017.2754271
    [24]
    G. Q. Li, W. L. Wang, W. W. Zhang, W. B. You, F. Wu, and H. Y. Tu, “Handling multimodal multi-objective problems through self-organizing quantum-inspired particle swarm optimization,” Inf. Sci., vol. 577, pp. 510–540, Oct. 2021. doi: 10.1016/j.ins.2021.07.011
    [25]
    W. H. Li, T. Zhang, R. Wang, and H. Ishibuchi, “Weighted indicator-based evolutionary algorithm for multimodal multiobjective optimization,” IEEE Trans. Evol. Computat., vol. 25, no. 6, pp. 1064–1078, Dec. 2021. doi: 10.1109/TEVC.2021.3078441
    [26]
    Y. P. Liu, H. Ishibuchi, G. G. Yen, Y. Nojima, and N. Masuyama, “Handling imbalance between convergence and diversity in the decision space in evolutionary multimodal multiobjective optimization,” IEEE Trans. Evol. Computat., vol. 24, no. 3, pp. 551–565, Jun. 2020.
    [27]
    J. Liang, B. Y. Qu, D. W. Gong, and C. T. Yue, Problem Definitions and Evaluation Criteria for the CEC 2019 Special Session on Multimodal Multiobjective Optimization, Zhengzhou University, Zhengzhou, China, 2019.
    [28]
    O. Schutze, M. Vasile, and C. A. C. Coello, “Computing the set of epsilon-efficient solutions in multiobjective space mission design,” J. Aerosp. Comput.,Inf.,Commun., vol. 8, no. 3, pp. 53–70, Mar. 2011. doi: 10.2514/1.46478
    [29]
    Y. P. Liu, H. Ishibuchi, Y. Nojima, N. Masuyama, and Y. Y. Han, “Searching for local Pareto optimal solutions: A case study on polygon-based problems,” in Proc. IEEE Congr. Evolutionary Computation, Wellington, New Zealand, 2019, pp. 896–903.
    [30]
    Q. Z. Lin, W. Lin, Z. X. Zhu, M. G. Gong, J. Q. Li, and C. A. C. Coello, “Multimodal multiobjective evolutionary optimization with dual clustering in decision and objective spaces,” IEEE Trans. Evol. Computat., vol. 25, no. 1, pp. 130–144, Feb. 2021. doi: 10.1109/TEVC.2020.3008822
    [31]
    W. L. Wang, G. Q. Li, Y. L. Wang, F. Wu, W. W. Zhang, and L. Li, “Clearing-based multimodal multi-objective evolutionary optimization with layer-to-layer strategy,” Swarm Evol. Computat., vol. 68, p. 100976, Feb. 2022. doi: 10.1016/j.swevo.2021.100976
    [32]
    J. Liang, H. Y. Lin, C. T. Yue, K. J. Yu, Y. Guo, and K. J. Qiao, “Multiobjective differential evolution with speciation for constrained multimodal multiobjective optimization,” IEEE Trans. Evol. Computat., 2022. DOI: 10.1109/TEVC.2022.3194253
    [33]
    F. Ming, W. Y. Gong, Y. P. Yang, and Z. W. Liao, “Constrained multimodal multi-objective optimization: Test problem construction and algorithm design,” Swarm Evol. Computat., vol. 76, p. 101209, Feb. 2023. doi: 10.1016/j.swevo.2022.101209
    [34]
    M. Laumanns, L. Thiele, K. Deb, and E. Zitzler, “Combining con-vergence and diversity in evolutionary multiobjective optimization,” Evol. Computat., vol. 10, no. 3, pp. 263–282, Sept. 2002. doi: 10.1162/106365602760234108
    [35]
    C. Horoba and F. Neumann, “Benefits and drawbacks for the use of epsilon-dominance in evolutionary multi-objective optimization,” in Proc. 10th Annu. Conf. Genetic and Evolutionary Computation, Atlanta, USA, 2008, pp. 641–648.
    [36]
    Q. Q. Fan and X. F. Yan, “Solving multimodal multiobjective problems through zoning search,” IEEE Trans. Syst.,Man,Cybern.: Syst., vol. 51, no. 8, pp. 4836–4847, Aug. 2021. doi: 10.1109/TSMC.2019.2944338
    [37]
    Q. Q. Fan and O. K. Ersoy, “Zoning search with adaptive resource allocating method for balanced and imbalanced multimodal multi-objective optimization,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 6, pp. 1163–1176, Jun. 2021. doi: 10.1109/JAS.2021.1004027
    [38]
    M. J. Ming, A. Trivedi, R. Wang, D. Srinivasan, and T. Zhang, “A dual-population-based evolutionary algorithm for constrained multiobjective optimization,” IEEE Trans. Evol. Computat., vol. 25, no. 4, pp. 739–753, Aug. 2021. doi: 10.1109/TEVC.2021.3066301
    [39]
    Y. Tian, T. Zhang, J. H. Xiao, X. Y. Zhang, and Y. C. Jin, “A coevolutionary framework for constrained multiobjective optimization problems,” IEEE Trans. Evol. Computat., vol. 25, no. 1, pp. 102–116, Feb. 2021. doi: 10.1109/TEVC.2020.3004012
    [40]
    W. H. Li, G. Zhang, X. Yang, Z. Tao, and H. Xu, “Sizing a hybrid renewable energy system by a coevolutionary multiobjective opti-mization algorithm,” Complexity, vol. 2021, p. 8822765, Feb. 2021.
    [41]
    E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength Pareto evolutionary algorithm,” ETH Zurich, Computer Eng. Networks Lab., TIK-Report 103, 2001.
    [42]
    C. T. Yue, P. N. Suganthan, J. Liang, B. Y. Qu, K. J. Yu, Y. S. Zhu, and L. Yan, “Differential evolution using improved crowding distance for multimodal multiobjective optimization,” Swarm Evol. Computat., vol. 62, p. 100849, Apr. 2021. doi: 10.1016/j.swevo.2021.100849
    [43]
    J. Liang, W. W. Xu, C. T. Yue, K. J. Yu, H. Song, O. D. Crisalle, and B. Y. Qu, “Multimodal multiobjective optimization with differential evolution,” Swarm Evol. Computat., vol. 44, pp. 1028–1059, Feb. 2019. doi: 10.1016/j.swevo.2018.10.016
    [44]
    Y. Tian, R. Cheng, X. Y. Zhang, and Y. C. Jin, “PlatEMO: A MATLAB platform for evolutionary multi-objective optimization[educational forum],” IEEE Comput. Intell. Mag., vol. 12, no. 4, pp. 73–87, Nov. 2017. doi: 10.1109/MCI.2017.2742868
    [45]
    F. Wang, X. J. Wang, and S. L. Sun, “A reinforcement learning level-based particle swarm optimization algorithm for large-scale opti-mization,” Inf. Sci., vol. 602, pp. 298–312, Jul. 2022. doi: 10.1016/j.ins.2022.04.053
    [46]
    K. W. Li, T. Zhang, and R. Wang, “Deep reinforcement learning for multiobjective optimization,” IEEE Trans. Cybern., vol. 51, no. 6, pp. 3103–3114, Jun. 2021. doi: 10.1109/TCYB.2020.2977661
    [47]
    W. Liu, R. Wang, T. Zhang, K. W. Li, W. H. Li, and H. Ishibuchi, “Hybridization of evolutionary algorithm and deep reinforcement learning for multi-objective orienteering optimization,” IEEE Trans. Evol. Computat., 2022. DOI: 10.1109/TEVC.2022.3199045
  • JAS-2023-0100-supp.pdf

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article Metrics

    Article views (1881) PDF downloads(450) Cited by()

    Highlights

    • A coevolutionary framework for GMMOPs is proposed, which integrates a novel algorithm CoMMEA
    • The ϵ-dominance method and local convergence indicator are used to balance diversity and convergence
    • The framework can handle almost all types of MMOPs with different characteristics and complexities
    • Theoretical and empirical studies are provided to demonstrate its effectiveness and efficiency
    • The paper contributes to the advancement of GMMOPs research and applications

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return