A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 10 Issue 6
Jun.  2023

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
J. C. Huang, Z. X. Li, and Z. Zhou, “A simple framework to generalized zero-shot learning for fault diagnosis of industrial processes,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 6, pp. 1504–1506, Jun. 2023. doi: 10.1109/JAS.2023.123426
Citation: J. C. Huang, Z. X. Li, and Z. Zhou, “A simple framework to generalized zero-shot learning for fault diagnosis of industrial processes,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 6, pp. 1504–1506, Jun. 2023. doi: 10.1109/JAS.2023.123426

A Simple Framework to Generalized Zero-Shot Learning for Fault Diagnosis of Industrial Processes

doi: 10.1109/JAS.2023.123426
More Information
  • loading
  • [1]
    C. H. Lampert, H. Nickisch, and S. Harmeling, “Learning to detect unseen object classes by between-class attribute transfer,” in Proc. IEEE Conf. CVPR, Miami, USA, 2009, pp. 951–958.
    [2]
    L. Feng and C. Zhao, “Fault description based attribute transfer for zero-sample industrial fault diagnosis,” IEEE Trans. Ind. Inf., vol. 17, no. 3, pp. 1852–1862, 2021. doi: 10.1109/TII.2020.2988208
    [3]
    W.-L. Chao, S. Changpinyo, B. Gong, and F. Sha, “An empirical study and analysis of generalized zero-shot learning for object recognition in the wild,” in Proc. ECCV’16, Amsterdam, The Netherlands, 2016, pp. 52–68.
    [4]
    H. Lv, J. Chen, T. Pan, and Z. Zhou, “Hybrid attribute conditional adversarial denoising autoencoder for zero-shot classification of mechanical intelligent fault diagnosis,” Appl. Soft Comput., vol. 95, p. 106577, 2020. doi: 10.1016/j.asoc.2020.106577
    [5]
    J. Xu, L. Zhou, W. Zhao, Y. Fan, X. Ding, and X. Yuan, “Zero-shot learning for compound fault diagnosis of bearings,” Expert Syst. Appl., vol. 190, p. 116197, 2022. doi: 10.1016/j.eswa.2021.116197
    [6]
    Y. Gao, L. Gao, X. Li, and Y. Zheng, “A zero-shot learning method for fault diagnosis under unknown working loads,” J. Intell Manuf, vol. 31, no. 12, pp. 899–909, 2019.
    [7]
    A. He and X. Jin, “Deep variational autoencoder classifier for intelligent fault diagnosis adaptive to unseen fault categories,” IEEE Trans. Reliab., vol. 70, no. 4, pp. 1581–1595, 2021. doi: 10.1109/TR.2021.3090310
    [8]
    S. Xing, Y. Lei, S. Wang, N. Lu, and N. Li, “A label description space embedded model for zero-shot intelligent diagnosis of mechanical compound faults,” Mech. Syst. Sig. Process., vol. 162, p. 108036, 2022. doi: 10.1016/j.ymssp.2021.108036
    [9]
    J. Huang, Z. Li, L. Ye, and Z. Zhou, “Fault classification of industrial processes based on generalized zero-shot learning,” in Proc. IEEE 10th DDCLS Conf., Suzhou, China, 2021, pp. 887–892.
    [10]
    Y. Zhuo and Z. Ge, “Auxiliary information-guided industrial data augmentation for any-shot fault learning and diagnosis,” IEEE Trans. Ind. Inf., vol. 17, no. 11, pp. 7535–7545, 2021. doi: 10.1109/TII.2021.3053106
    [11]
    J. Downs and E. Vogel, “A plant-wide industrial process control problem,” Comput. Chem. Eng., vol. 17, no. 3, pp. 245–255, 1993. doi: 10.1016/0098-1354(93)80018-I

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(6)

    Article Metrics

    Article views (277) PDF downloads(51) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return