IEEE/CAA Journal of Automatica Sinica
Citation:  X. Y. Jiang, X. Y. Kong, and Z. Q. Ge, “Augmented industrial datadriven modeling under the curse of dimensionality,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 6, pp. 1445–1461, Jun. 2023. doi: 10.1109/JAS.2023.123396 
[1] 
J. C. Qian, L. Jiang, and Z. H. Song, “Locally linear backpropagation based contribution for nonlinear process fault diagnosis,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 3, pp. 764–775, May 2020. doi: 10.1109/JAS.2020.1003147

[2] 
A. White, A. Karimoddini, and M. Karimadini, “Resilient fault diagnosis under imperfect observations–a need for industry 4.0 era,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1279–1288, Sept. 2020. doi: 10.1109/JAS.2020.1003333

[3] 
R. B. Jin, M. Wu, K. Y. Wu, K. Z. Gao, Z. H. Chen, and X. L. Li, “Position encoding based convolutional neural networks for machine remaining useful life prediction,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 8, pp. 1427–1439, Aug. 2022. doi: 10.1109/JAS.2022.105746

[4] 
Z. Y. Yang and Z. Q. Ge, “On paradigm of industrial big data analytics: From evolution to revolution,” IEEE Trans. Ind. Inf., vol. 18, no. 12, pp. 8373–8388, Dec. 2022. doi: 10.1109/TII.2022.3190394

[5] 
X. Y. Kong, X. Y. Jiang, B. X. Zhang, J. S. Yuan, and Z. Q. Ge, “Latent variable models in the era of industrial big data: Extension and beyond,” Annu. Rev. Control, vol. 54, pp. 167–199, 2022.

[6] 
X. Luo, M. C. Zhou, S. Li, L. Hu, and M. S. Shang, “Nonnegativity constrained missing data estimation for highdimensional and sparse matrices from industrial applications,” IEEE Trans. Cybern., vol. 50, no. 5, pp. 1844–1855, May 2020. doi: 10.1109/TCYB.2019.2894283

[7] 
K. K. Huang, Y. M. Wu, C. Wang, Y. F. Xie, C. H. Yang, and W. H. Gui, “A projective and discriminative dictionary learning for highdimensional process monitoring with industrial applications,” IEEE Trans. Ind. Inf., vol. 17, no. 1, pp. 558–568, Jan. 2021. doi: 10.1109/TII.2020.2992728

[8] 
B. B. Shen, L. Yao, and Z. Q. Ge, “Predictive modeling with multiresolution pyramid VAE and industrial soft sensor applications,” IEEE Trans. Cybern., 2022. DOI: 10.1109/TCYB.2022.3143613

[9] 
L. Yao, B. B. Shen, L. L. Cui, J. H. Zheng, and Z. Q. Ge, “Semisupervised deep dynamic probabilistic latent variable model for multimode process soft sensor application,” IEEE Trans. Ind. Inf., vol. 19, no. 4, pp. 6056–6068, Apr. 2023. doi: 10.1109/TII.2022.3183211

[10] 
A. Glowacz, “Acoustic based fault diagnosis of threephase induction motor,” Appl. Acoust., vol. 137, pp. 82–89, Aug. 2018. doi: 10.1016/j.apacoust.2018.03.010

[11] 
K. Muhammad, T. Hussain, J. Del Ser, V. Palade, and V. H. C. De Albuquerque, “DeePreS: A deep learningbased video summarization strategy for resourceconstrained industrial surveillance scenarios,” IEEE Trans. Ind. Inf., vol. 16, no. 9, pp. 5938–5947, Sept. 2020. doi: 10.1109/TII.2019.2960536

[12] 
X. Y. Jiang and Z. Q. Ge, “Augmented multidimensional convolutional neural network for industrial soft sensing,” IEEE Trans. Instrum. Meas., vol. 70, p. 2508410, Apr. 2021.

[13] 
D. L. Zheng, L. Zhou, and Z. H. Song, “Kernel generalization of multirate probabilistic principal component analysis for fault detection in nonlinear process,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 8, pp. 1465–1476, Aug. 2021. doi: 10.1109/JAS.2021.1004090

[14] 
N. Altman and M. Krzywinski, “The curse(s) of dimensionality,” Nat. Methods, vol. 15, no. 6, pp. 399–400, May 2018. doi: 10.1038/s415920180019x

[15] 
H. Y. Liu, M. C. Zhou, and Q. Liu, “An embedded feature selection method for imbalanced data classification,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 3, pp. 703–715, May 2019. doi: 10.1109/JAS.2019.1911447

[16] 
J. H. Wang, L. Y. Qiao, Y. Q. Ye, and Y. Q. Chen, “Fractional envelope analysis for rolling element bearing weak fault feature extraction,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 2, pp. 353–360, Apr. 2017. doi: 10.1109/JAS.2016.7510166

[17] 
C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for deep learning,” J. Big Data, vol. 6, no. 1, p. 60, Jul. 2019. doi: 10.1186/s4053701901970

[18] 
Y. Grandvalet, S. Canu, and S. Boucheron, “Noise injection: Theoretical prospects,” Neural Comput., vol. 9, no. 5, pp. 1093–1108, Jul. 1997. doi: 10.1162/neco.1997.9.5.1093

[19] 
N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. Kegelmeyer, “SMOTE: Synthetic minority oversampling technique,” J. Artif. Intell. Res., vol. 16, no. 1, pp. 321–357, Jan. 2002.

[20] 
H. Y. Zhang, M. Cissé, Y. N. Dauphin, and D. LopezPaz, “mixup: Beyond empirical risk minimization,” in Proc. 6th Int. Conf. Learning Representations, Vancouver, Canada, 2017.

[21] 
H. Inoue, “Data augmentation by pairing samples for images classification,” arXiv preprint arXiv: 1801.02929, 2018.

[22] 
F. N. Hatamian, N. Ravikumar, S. Vesal, F. P. Kemeth, M. Struck, and A. Maier, “The effect of data augmentation on classification of atrial fibrillation in short singlelead ECG signals using deep neural networks,” in IEEE Int. Conf. Acoustics, Speech and Signal Processing, Barcelona, Spain, 2020, pp. 1264–1268.

[23] 
I. J. Goodfellow, J. PougetAbadie, M. Mirza, B. Xu, D. WardeFarley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Proc. 27th Int. Conf. Neural Information Processing Systems, Montreal, Canada, 2014, pp. 2672–2680.

[24] 
X. Y. Jiang and Z. Q. Ge, “Data augmentation classifier for imbalanced fault classification,” IEEE Trans. Automation Science and Engineering, vol. 18, no. 3, pp. 1206–1217, Jul. 2021. doi: 10.1109/TASE.2020.2998467

[25] 
L. Li, S. K. Damarla, Y. L. Wang, and B. Huang, “A Gaussian mixture model based virtual sample generation approach for small datasets in industrial processes,” Inf. Sci., vol. 581, pp. 262–277, Dec. 2021. doi: 10.1016/j.ins.2021.09.014

[26] 
X. Y. Wang, Z. Y. Chu, B. K. Han, J. R. Wang, G. W. Zhang, and X. X. Jiang, “A novel data augmentation method for intelligent fault diagnosis under speed fluctuation condition,” IEEE Access, vol. 8, pp. 143383–143396, Aug. 2020. doi: 10.1109/ACCESS.2020.3014340

[27] 
A. Fujishiro, Y. Nagamura, T. Usami, and M. Inoue, “Minimizing convolutional neural network training data with proper data augmentation for inline defect classification,” IEEE Trans. Semicond. Manuf., vol. 34, no. 3, pp. 333–339, Aug. 2021. doi: 10.1109/TSM.2021.3074456

[28] 
X. Y. Jiang and Z. Q. Ge, “RAGAN: Regression attention generative adversarial networks,” IEEE Trans. Artif. Intell., 2022. DOI: 10.1109/TAI.2022.3209956

[29] 
V. Vapnik, “Principles of risk minimization for learning theory,” in Proc. 4th Int. Conf. Neural Information Processing Systems, Denver, USA, 1991, pp. 831–838.

[30] 
D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67–82, Apr. 1997. doi: 10.1109/4235.585893

[31] 
M. Hutter, “On the existence and convergence of computable universal priors,” in Proc. 14th Int. Conf. Algorithmic Learning Theory, Sapporo, Japan, 2003, pp. 298–312.

[32] 
P. Bühlmann and S. Van De Geer, Statistics for HighDimensional Data: Methods, Theory and Applications. Berlin, Germany: Springer, 2011.

[33] 
N. S. Altman, “An introduction to kernel and nearestneighbor nonparametric regression,” Am. Stat., vol. 46, no. 3, pp. 175–185, Feb. 1992.

[34] 
I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, USA: MIT Press, 2016.

[35] 
X. F. He, D. Cai, S. C. Yan, and H.J. Zhang, “Neighborhood preserving embedding,” in Proc. 10th IEEE Int. Conf. Computer Vision, Beijing, China, 2005, pp. 1208–1213.

[36] 
Z. Q. Ge and Z. H. Song, “A comparative study of justintimelearning based methods for online soft sensor modeling,” Chemom. Intell. Lab. Syst., vol. 104, no. 2, pp. 306–317, Dec. 2010. doi: 10.1016/j.chemolab.2010.09.008

[37] 
M. Balasubramanian and E. L. Schwartz, “The isomap algorithm and topological stability,” Science, vol. 295, no. 5552, p. 7, Jan. 2002. doi: 10.1126/science.295.5552.7a

[38] 
A. Halevy, Norvig, and F. Pereira, “The unreasonable effectiveness of data,” IEEE Intell. Syst., vol. 24, no. 2, pp. 8–12, Mar.–Apr. 2009. doi: 10.1109/MIS.2009.36

[39] 
M. J. Kearns and U. Vazirani, An Introduction to Computational Learning Theory. Cambridge, USA: MIT Press, 1994.

[40] 
A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, “Learnability and the vapnikchervonenkis dimension,” J. ACM, vol. 36, no. 4, pp. 929–965, Oct. 1989. doi: 10.1145/76359.76371

[41] 
C. Sun, A. Shrivastava, S. Singh, and A. Gupta, “Revisiting unreasonable effectiveness of data in deep learning era,” in IEEE Int. Conf. Computer Vision, Venice, Italy, 2017, pp. 843–852.

[42] 
J. Cho, K. Lee, E. Shin, G. Choy, and S. Do, “How much data is needed to train a medical image deep learning system to achieve necessary high accuracy?” arXiv preprint arXiv: 1511.06348, 2016.

[43] 
J. Hestness, S. Narang, N. Ardalani, G. Diamos, H. Jun, H. Kianinejad, M. M. A. Patwary, Y. Yang, and Y. Q. Zhou, “Deep learning scaling is predictable, empirically,” arXiv preprint arXiv: 1712.00409, 2017.

[44] 
X. Y. Jiang and Z. Q. Ge, “Improving the performance of justintime learningbased soft sensor through data augmentation,” IEEE Trans. Ind. Electron., vol. 69, no. 12, pp. 13716–13726, Dec. 2022. doi: 10.1109/TIE.2021.3139194

[45] 
X. Y. Kong and Z. Q. Ge, “Deep PLS: A lightweight deep learning model for interpretable and efficient data analytics,” IEEE Trans. Neural Netw. Learn. Syst., 2022. DOI: 10.1109/TNNLS.2022.3154090

[46] 
C. K. Williams and M. Seeger, “Using the Nyström method to speed up kernel machines,” in Proc. 13th Int. Conf. Neural Information Processing Systems, Denver, USA, 2000, pp. 661–667.

[47] 
J. J. Downs and E. F. Vogel, “A plantwide industrial process control problem,” Comput. Chem. Eng., vol. 17, no. 3, pp. 245–255, Mar. 1993. doi: 10.1016/00981354(93)80018I

[48] 
X. Y. Jiang and Z. Q. Ge, “Information fingerprint for secure industrial big data analytics,” IEEE Trans. Ind. Inf., vol. 18, no. 4, pp. 2641–2650, Apr. 2022. doi: 10.1109/TII.2021.3104056

[49] 
X. Y. Jiang and Z. Q. Ge, “Attacks on datadriven process monitoring systems: Subspace transfer networks,” IEEE Trans. Artif. Intell., vol. 3, no. 3, pp. 470–484, Jun. 2022. doi: 10.1109/TAI.2022.3145335
