IEEE/CAA Journal of Automatica Sinica
Citation: | X. Y. Jiang, X. Y. Kong, and Z. Q. Ge, “Augmented industrial data-driven modeling under the curse of dimensionality,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 6, pp. 1445–1461, Jun. 2023. doi: 10.1109/JAS.2023.123396 |
[1] |
J. C. Qian, L. Jiang, and Z. H. Song, “Locally linear back-propagation based contribution for nonlinear process fault diagnosis,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 3, pp. 764–775, May 2020. doi: 10.1109/JAS.2020.1003147
|
[2] |
A. White, A. Karimoddini, and M. Karimadini, “Resilient fault diagnosis under imperfect observations–a need for industry 4.0 era,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1279–1288, Sept. 2020. doi: 10.1109/JAS.2020.1003333
|
[3] |
R. B. Jin, M. Wu, K. Y. Wu, K. Z. Gao, Z. H. Chen, and X. L. Li, “Position encoding based convolutional neural networks for machine remaining useful life prediction,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 8, pp. 1427–1439, Aug. 2022. doi: 10.1109/JAS.2022.105746
|
[4] |
Z. Y. Yang and Z. Q. Ge, “On paradigm of industrial big data analytics: From evolution to revolution,” IEEE Trans. Ind. Inf., vol. 18, no. 12, pp. 8373–8388, Dec. 2022. doi: 10.1109/TII.2022.3190394
|
[5] |
X. Y. Kong, X. Y. Jiang, B. X. Zhang, J. S. Yuan, and Z. Q. Ge, “Latent variable models in the era of industrial big data: Extension and beyond,” Annu. Rev. Control, vol. 54, pp. 167–199, 2022.
|
[6] |
X. Luo, M. C. Zhou, S. Li, L. Hu, and M. S. Shang, “Non-negativity constrained missing data estimation for high-dimensional and sparse matrices from industrial applications,” IEEE Trans. Cybern., vol. 50, no. 5, pp. 1844–1855, May 2020. doi: 10.1109/TCYB.2019.2894283
|
[7] |
K. K. Huang, Y. M. Wu, C. Wang, Y. F. Xie, C. H. Yang, and W. H. Gui, “A projective and discriminative dictionary learning for high-dimensional process monitoring with industrial applications,” IEEE Trans. Ind. Inf., vol. 17, no. 1, pp. 558–568, Jan. 2021. doi: 10.1109/TII.2020.2992728
|
[8] |
B. B. Shen, L. Yao, and Z. Q. Ge, “Predictive modeling with multiresolution pyramid VAE and industrial soft sensor applications,” IEEE Trans. Cybern., 2022. DOI: 10.1109/TCYB.2022.3143613
|
[9] |
L. Yao, B. B. Shen, L. L. Cui, J. H. Zheng, and Z. Q. Ge, “Semi-supervised deep dynamic probabilistic latent variable model for multimode process soft sensor application,” IEEE Trans. Ind. Inf., vol. 19, no. 4, pp. 6056–6068, Apr. 2023. doi: 10.1109/TII.2022.3183211
|
[10] |
A. Glowacz, “Acoustic based fault diagnosis of three-phase induction motor,” Appl. Acoust., vol. 137, pp. 82–89, Aug. 2018. doi: 10.1016/j.apacoust.2018.03.010
|
[11] |
K. Muhammad, T. Hussain, J. Del Ser, V. Palade, and V. H. C. De Albuquerque, “DeePreS: A deep learning-based video summarization strategy for resource-constrained industrial surveillance scenarios,” IEEE Trans. Ind. Inf., vol. 16, no. 9, pp. 5938–5947, Sept. 2020. doi: 10.1109/TII.2019.2960536
|
[12] |
X. Y. Jiang and Z. Q. Ge, “Augmented multidimensional convolutional neural network for industrial soft sensing,” IEEE Trans. Instrum. Meas., vol. 70, p. 2508410, Apr. 2021.
|
[13] |
D. L. Zheng, L. Zhou, and Z. H. Song, “Kernel generalization of multi-rate probabilistic principal component analysis for fault detection in nonlinear process,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 8, pp. 1465–1476, Aug. 2021. doi: 10.1109/JAS.2021.1004090
|
[14] |
N. Altman and M. Krzywinski, “The curse(s) of dimensionality,” Nat. Methods, vol. 15, no. 6, pp. 399–400, May 2018. doi: 10.1038/s41592-018-0019-x
|
[15] |
H. Y. Liu, M. C. Zhou, and Q. Liu, “An embedded feature selection method for imbalanced data classification,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 3, pp. 703–715, May 2019. doi: 10.1109/JAS.2019.1911447
|
[16] |
J. H. Wang, L. Y. Qiao, Y. Q. Ye, and Y. Q. Chen, “Fractional envelope analysis for rolling element bearing weak fault feature extraction,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 2, pp. 353–360, Apr. 2017. doi: 10.1109/JAS.2016.7510166
|
[17] |
C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for deep learning,” J. Big Data, vol. 6, no. 1, p. 60, Jul. 2019. doi: 10.1186/s40537-019-0197-0
|
[18] |
Y. Grandvalet, S. Canu, and S. Boucheron, “Noise injection: Theoretical prospects,” Neural Comput., vol. 9, no. 5, pp. 1093–1108, Jul. 1997. doi: 10.1162/neco.1997.9.5.1093
|
[19] |
N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. Kegelmeyer, “SMOTE: Synthetic minority over-sampling technique,” J. Artif. Intell. Res., vol. 16, no. 1, pp. 321–357, Jan. 2002.
|
[20] |
H. Y. Zhang, M. Cissé, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond empirical risk minimization,” in Proc. 6th Int. Conf. Learning Representations, Vancouver, Canada, 2017.
|
[21] |
H. Inoue, “Data augmentation by pairing samples for images classification,” arXiv preprint arXiv: 1801.02929, 2018.
|
[22] |
F. N. Hatamian, N. Ravikumar, S. Vesal, F. P. Kemeth, M. Struck, and A. Maier, “The effect of data augmentation on classification of atrial fibrillation in short single-lead ECG signals using deep neural networks,” in IEEE Int. Conf. Acoustics, Speech and Signal Processing, Barcelona, Spain, 2020, pp. 1264–1268.
|
[23] |
I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Proc. 27th Int. Conf. Neural Information Processing Systems, Montreal, Canada, 2014, pp. 2672–2680.
|
[24] |
X. Y. Jiang and Z. Q. Ge, “Data augmentation classifier for imbalanced fault classification,” IEEE Trans. Automation Science and Engineering, vol. 18, no. 3, pp. 1206–1217, Jul. 2021. doi: 10.1109/TASE.2020.2998467
|
[25] |
L. Li, S. K. Damarla, Y. L. Wang, and B. Huang, “A Gaussian mixture model based virtual sample generation approach for small datasets in industrial processes,” Inf. Sci., vol. 581, pp. 262–277, Dec. 2021. doi: 10.1016/j.ins.2021.09.014
|
[26] |
X. Y. Wang, Z. Y. Chu, B. K. Han, J. R. Wang, G. W. Zhang, and X. X. Jiang, “A novel data augmentation method for intelligent fault diagnosis under speed fluctuation condition,” IEEE Access, vol. 8, pp. 143383–143396, Aug. 2020. doi: 10.1109/ACCESS.2020.3014340
|
[27] |
A. Fujishiro, Y. Nagamura, T. Usami, and M. Inoue, “Minimizing convolutional neural network training data with proper data augmentation for inline defect classification,” IEEE Trans. Semicond. Manuf., vol. 34, no. 3, pp. 333–339, Aug. 2021. doi: 10.1109/TSM.2021.3074456
|
[28] |
X. Y. Jiang and Z. Q. Ge, “RAGAN: Regression attention generative adversarial networks,” IEEE Trans. Artif. Intell., 2022. DOI: 10.1109/TAI.2022.3209956
|
[29] |
V. Vapnik, “Principles of risk minimization for learning theory,” in Proc. 4th Int. Conf. Neural Information Processing Systems, Denver, USA, 1991, pp. 831–838.
|
[30] |
D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67–82, Apr. 1997. doi: 10.1109/4235.585893
|
[31] |
M. Hutter, “On the existence and convergence of computable universal priors,” in Proc. 14th Int. Conf. Algorithmic Learning Theory, Sapporo, Japan, 2003, pp. 298–312.
|
[32] |
P. Bühlmann and S. Van De Geer, Statistics for High-Dimensional Data: Methods, Theory and Applications. Berlin, Germany: Springer, 2011.
|
[33] |
N. S. Altman, “An introduction to kernel and nearest-neighbor nonparametric regression,” Am. Stat., vol. 46, no. 3, pp. 175–185, Feb. 1992.
|
[34] |
I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, USA: MIT Press, 2016.
|
[35] |
X. F. He, D. Cai, S. C. Yan, and H.-J. Zhang, “Neighborhood preserving embedding,” in Proc. 10th IEEE Int. Conf. Computer Vision, Beijing, China, 2005, pp. 1208–1213.
|
[36] |
Z. Q. Ge and Z. H. Song, “A comparative study of just-in-time-learning based methods for online soft sensor modeling,” Chemom. Intell. Lab. Syst., vol. 104, no. 2, pp. 306–317, Dec. 2010. doi: 10.1016/j.chemolab.2010.09.008
|
[37] |
M. Balasubramanian and E. L. Schwartz, “The isomap algorithm and topological stability,” Science, vol. 295, no. 5552, p. 7, Jan. 2002. doi: 10.1126/science.295.5552.7a
|
[38] |
A. Halevy, Norvig, and F. Pereira, “The unreasonable effectiveness of data,” IEEE Intell. Syst., vol. 24, no. 2, pp. 8–12, Mar.–Apr. 2009. doi: 10.1109/MIS.2009.36
|
[39] |
M. J. Kearns and U. Vazirani, An Introduction to Computational Learning Theory. Cambridge, USA: MIT Press, 1994.
|
[40] |
A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, “Learnability and the vapnik-chervonenkis dimension,” J. ACM, vol. 36, no. 4, pp. 929–965, Oct. 1989. doi: 10.1145/76359.76371
|
[41] |
C. Sun, A. Shrivastava, S. Singh, and A. Gupta, “Revisiting unreasonable effectiveness of data in deep learning era,” in IEEE Int. Conf. Computer Vision, Venice, Italy, 2017, pp. 843–852.
|
[42] |
J. Cho, K. Lee, E. Shin, G. Choy, and S. Do, “How much data is needed to train a medical image deep learning system to achieve necessary high accuracy?” arXiv preprint arXiv: 1511.06348, 2016.
|
[43] |
J. Hestness, S. Narang, N. Ardalani, G. Diamos, H. Jun, H. Kianinejad, M. M. A. Patwary, Y. Yang, and Y. Q. Zhou, “Deep learning scaling is predictable, empirically,” arXiv preprint arXiv: 1712.00409, 2017.
|
[44] |
X. Y. Jiang and Z. Q. Ge, “Improving the performance of just-in-time learning-based soft sensor through data augmentation,” IEEE Trans. Ind. Electron., vol. 69, no. 12, pp. 13716–13726, Dec. 2022. doi: 10.1109/TIE.2021.3139194
|
[45] |
X. Y. Kong and Z. Q. Ge, “Deep PLS: A lightweight deep learning model for interpretable and efficient data analytics,” IEEE Trans. Neural Netw. Learn. Syst., 2022. DOI: 10.1109/TNNLS.2022.3154090
|
[46] |
C. K. Williams and M. Seeger, “Using the Nyström method to speed up kernel machines,” in Proc. 13th Int. Conf. Neural Information Processing Systems, Denver, USA, 2000, pp. 661–667.
|
[47] |
J. J. Downs and E. F. Vogel, “A plant-wide industrial process control problem,” Comput. Chem. Eng., vol. 17, no. 3, pp. 245–255, Mar. 1993. doi: 10.1016/0098-1354(93)80018-I
|
[48] |
X. Y. Jiang and Z. Q. Ge, “Information fingerprint for secure industrial big data analytics,” IEEE Trans. Ind. Inf., vol. 18, no. 4, pp. 2641–2650, Apr. 2022. doi: 10.1109/TII.2021.3104056
|
[49] |
X. Y. Jiang and Z. Q. Ge, “Attacks on data-driven process monitoring systems: Subspace transfer networks,” IEEE Trans. Artif. Intell., vol. 3, no. 3, pp. 470–484, Jun. 2022. doi: 10.1109/TAI.2022.3145335
|