IEEE/CAA Journal of Automatica Sinica
Citation: | L. F. Hua, H. Zhu, S. M. Zhong, K. B. Shi, and J. D. Cao, “Novel criteria on finite-time stability of impulsive stochastic nonlinear systems,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 7, pp. 1634–1636, Jul. 2023. doi: 10.1109/JAS.2023.123276 |
[1] |
W. M. Haddad, V. Chellaboina, and S. G. Nersesov, Impulsive and Hybrid Dynamical Systems. Princeton, USA: Princeton University Press, 2014.
|
[2] |
Y. Wang, X. Li, and S. Song, “Input-to-state stabilization of nonlinear impulsive delayed systems: An observer-based control approach,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 7, pp. 1273–1283, Jul. 2022. doi: 10.1109/JAS.2022.105422
|
[3] |
A. R. Teel, A. Subbaraman, and A. Sferlazza, “Stability analysis for stochastic hybrid systems: A survey,” Automatica, vol. 50, no. 10, pp. 2435–2456, 2014. doi: 10.1016/j.automatica.2014.08.006
|
[4] |
X. Mao, Stochastic Differential Equations and Applications, 2nd ed. London, UK: Horwood, 2007.
|
[5] |
H. Min, S. Xu, B. Zhang, Q. Ma, and D. Yuan, “Fixed-time Lyapunov criteria and state-feedback controller design for stochastic nonlinear systems,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 6, pp. 1005–1014, Jun. 2022. doi: 10.1109/JAS.2022.105539
|
[6] |
W. Ren and J. Xiong, “Stability analysis of impulsive stochastic nonlinear systems,” IEEE Trans. Automatic Control, vol. 62, no. 9, pp. 4791–4797, 2017. doi: 10.1109/TAC.2017.2688350
|
[7] |
X. Wu, Y. Tang, and W. Zhang, “Input-to-state stability of impulsive stochastic delayed systems under linear assumptions,” Automatica, vol. 66, pp. 195–204, 2016. doi: 10.1016/j.automatica.2016.01.002
|
[8] |
W. Hu, Q. Zhu, and H. R. Karimi, “On the pth moment integral input-to-state stability and input-to-state stability criteria for impulsive stochastic functional differential equations,” Int. J. Robust Nonlinear Control, vol. 29, no. 16, pp. 5609–5620, 2019. doi: 10.1002/rnc.4688
|
[9] |
Y. Liu, H. Li, Z. Zuo, X. Li, and R. Lu, “An overview of finite/fixed-time control and its application in engineering systems,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 12, pp. 2106–2120, Dec. 2022. doi: 10.1109/JAS.2022.105413
|
[10] |
S. P. Bhat and D. S. Bernstein, “Finite-time stability of continuous autonomous systems,” SIAM J. Control Optimization, vol. 38, no. 3, pp. 751–766, 2000. doi: 10.1137/S0363012997321358
|
[11] |
E. Moulay, M. Dambrine, N. Yeganefar, and W. Perruquetti, “Finite-time stability and stabilization of time-delay systems,” Systems &Control Letters, vol. 57, no. 7, pp. 561–566, 2008.
|
[12] |
X. Li, D. W. Ho, and J. Cao, “Finite-time stability and settling-time estimation of nonlinear impulsive systems,” Automatica, vol. 99, pp. 361–368, 2019. doi: 10.1016/j.automatica.2018.10.024
|
[13] |
J. Yin, S. Khoo, Z. Man, and X. Yu, “Finite-time stability and instability of stochastic nonlinear systems,” Automatica, vol. 47, no. 12, pp. 2671–2677, 2011. doi: 10.1016/j.automatica.2011.08.050
|
[14] |
S. Khoo, J. Yin, Z. Man, and X. Yu, “Finite-time stabilization of stochastic nonlinear systems in strict-feedback form,” Automatica, vol. 49, no. 5, pp. 1403–1410, 2013. doi: 10.1016/j.automatica.2013.01.054
|
[15] |
X. Yu, J. Yin, and S. Khoo, “Generalized lyapunov criteria on finite-time stability of stochastic nonlinear systems,” Automatica, vol. 107, pp. 183–189, 2019. doi: 10.1016/j.automatica.2019.05.048
|
[16] |
G. Zhao, J. Li, and S. Liu, “Finite-time stabilization of weak solutions for a class of non-local lipschitzian stochastic nonlinear systems with inverse dynamics,” Automatica, vol. 98, pp. 285–295, 2018. doi: 10.1016/j.automatica.2018.07.015
|