IEEE/CAA Journal of Automatica Sinica
Citation: | Q. B. Ge, X. M. Hu, Y. Y. Li, H. L. He, and Z. H. Song, “A novel adaptive Kalman filter based on credibility measure,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 1, pp. 103–120, Jan. 2023. doi: 10.1109/JAS.2023.123012 |
[1] |
R. E. Kalman, “A new approach to linear filtering and prediction problems,” Trans. ASME-J. Basic Eng, vol. 82, pp. 35–45, 1960. doi: 10.1115/1.3662552
|
[2] |
Q.-B. Ge, T. Shao, Z.-S. Duan, and C.-L. Wen, “Performance analysis of the Kalman filter with mismatched noise covariances,” IEEE. Trans. Autom. Control, vol. 61, no. 12, pp. 4014–4019, 2016. doi: 10.1109/TAC.2016.2535158
|
[3] |
L. E. Andersson, L.Imsland, E. F. Brekke, and F. Scibilia, “On Kalman filtering with linear state equality constraints,” Automatica, vol. 101, pp. 467–470, 2019. doi: 10.1016/j.automatica.2018.12.010
|
[4] |
Q.-B. Ge, T.-X. Chen, H.-L. He, and Z.-T. Hu, “Cramer-Rao lower bound-based observable degree analysis,” Science China (Information Sciences)
|
[5] |
L. F. Zhang, S. P. Wang, M. S. Selezneva, and K. A. Neusypin, “A new adaptive Kalman filter for navigation systems of carrier-based aircraft,” Chinese J. Aeronautics, vol. 35, no. 1, pp. 416–425, 2022. doi: 10.1016/j.cja.2021.04.014
|
[6] |
C.-Y. Zhang, “Research on adaptive filtering method,” J. Aeronautics, vol. 19, no. 1, pp. 97–100, 1998.
|
[7] |
D. Zhao, S.-X. Ding, H. R. Karimi, Y.-Y. Li, and Y.-Q. Wang, “On robust Kalman filter for two-dimensional uncertain linear discrete time-varying systems: A least squares method,” Automatica, vol. 99, pp. 203–212, 2019. doi: 10.1016/j.automatica.2018.10.029
|
[8] |
M. B. Luca, S. Azou, G. Burel, and A. Serbanescu, “On exact Kalman filtering of polynomial systems,” IEEE Trans. Circuits Syst. I Reg. Papers, vol. 53, no. 6, pp. 1329–1340, 2006. doi: 10.1109/TCSI.2006.870899
|
[9] |
Q.-B. Ge, Z.-C. Ma, J.-L. Li, Q.-M. Yang, Z.-Y. Lu, and H. Li, “Adaptive cubature Kalman filter with the estimation of correlation between multiplicative noise and additive measurement noise,” Chinese J. Aeronautics, vol. 35, no. 5, pp. 40–52, 2022. doi: 10.1016/j.cja.2021.05.004
|
[10] |
Q.-B. Ge, T. Shao, S.-D. Chen, and C.-L. Wen, “Carrier tracking estimation analysis by using the extended strong tracking filtering,” IEEE Trans. Industrial Electronics, vol. 64, no. 2, pp. 1415–1424, 2017. doi: 10.1109/TIE.2016.2610403
|
[11] |
L. Zhao and K. Wu, “New adaptive Kalman filtering algorithm and application,” Piezoelectric and Acousto-Optic, vol. 31, no. 6, pp. 908–911, 2009.
|
[12] |
A. P. Sage and G. W. Husa, “Algorithms for sequential adaptive estimation of prior statistics,” in Proc. 8th IEEE Symp. Adaptive Processes, 1969, pp. 17–19.
|
[13] |
S. Sarkka and A. Nummenmaa, “Recursive noise adaptive Kalman filtering by variational Bayesian approximations,” IEEE Trans. Automatic Control, vol. 54, no. 3, pp. 596–600, 2009. doi: 10.1109/TAC.2008.2008348
|
[14] |
J. Sun, Z. Jie, and X. Gu, “Variational Bayesian two-stage Kalman filter for systems with unknown inputs,” Procedia Engineering, vol. 29, no. 4, pp. 2265–2273, 2012.
|
[15] |
Y. Huang, Y. Zhang, Z. Wu, L. Ning, and J. Chambers, “A novel adaptive Kalman filter with inaccurate process and measurement noise covariance matrices,” IEEE Trans. Automatic Control, vol. 63, no. 2, pp. 594–601, 2018. doi: 10.1109/TAC.2017.2730480
|
[16] |
M. Zorzi, “Robust Kalman filtering under model perturbations,” IEEE Trans. Automatic Control, vol. 62, no. 6, pp. 2902–2907, 2017. doi: 10.1109/TAC.2016.2601879
|
[17] |
Z.-W. Zhou and H.-T. Fang, “L2-stability of discrete-time Kalman filter with random coefficients under incorrect covariance,” ACTA Automatica Sinica, vol. 39, no. 1, pp. 43–52, 2013. doi: 10.1016/S1874-1029(13)60005-1
|
[18] |
T. Shao, Q.-B. Ge, Z.-S. Duan, and J. Yu, “Relative closeness ranking of Kalman filtering with multiple mismatched measurement noise covariances,” IET Control Theory Appl, vol. 12, no. 8, pp. 1133–1140, 2018. doi: 10.1049/iet-cta.2017.1088
|
[19] |
S. Gibson and B. Ninness, “Robust maximum-likelihood estimation of multivariable dynamic systems,” Automatica, vol. 41, no. 10, pp. 1667–1682, 2005. doi: 10.1016/j.automatica.2005.05.008
|
[20] |
Z. Zhao, J. Wang, X. Cheng, and Y. Qi, “Particle swarm optimized particle filter and its application in visual tracking,” in Proc. 6th. Natural. Comput. Conf., 2010, pp. 2673–2676.
|
[21] |
J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. ICNN. Conf. Neural Networks, 1995, pp. 1942–1948.
|
[22] |
B.-D. Chen, X. Liu, H.-Q. Zhao, and J. C. Principe, “Maximum correntropy Kalman filter,” Automatica, vol. 76, pp. 70–77, 2017. doi: 10.1016/j.automatica.2016.10.004
|
[23] |
Z.-Z. Wu, M.-Y. Fu, Y. Xu, and R.-Q. Lu, “A distributed Kalman filtering algorithm with fast finite-time convergence for sensor networks,” Automatica, vol. 95, pp. 63–72, 2018. doi: 10.1016/j.automatica.2018.05.012
|
[24] |
M.-M. Wang, Q.-B. Ge, C.-X. Li, and C.-Y. Sun, “Charging diagnosis of power battery based on adaptive STCKF and BLS for electric vehicles,” IEEE Trans. Vehicular Technology, vol. 71, no. 8, pp. 8251–8265, 2022. doi: 10.1109/TVT.2022.3171766
|
[25] |
D. Etter, M. Hicks, and K. Cho, “Recursive adaptive filter design using an adaptive genetic algorithm,” in Proc. IEEE. ICASSP. Conf, 1982, pp. 635–638.
|
[26] |
N. Benvenuto and M. Marchesi, “Digital filters design by simulated annealing,” IEEE Trans. Circuits Syst, vol. 36, no. 3, pp. 459–460, 1989. doi: 10.1109/31.17597
|
[27] |
K. Watanabe, F. Campelo, and H. Igarashi, “Topology optimization based on immune algorithm and multigrid method,” IEEE Trans. Magn, vol. 43, no. 4, pp. 1637–1640, April. 2007. doi: 10.1109/TMAG.2006.892259
|
[28] |
S. Qian, Y. Ye, B. Jiang, and J. Wang, “Constrained multiobjective optimization algorithm based on immune system model,” IEEE Trans. Cybern, vol. 46, no. 9, pp. 2056–2069, 2016. doi: 10.1109/TCYB.2015.2461651
|
[29] |
Q. Song, Y. Wu, and Y.-C. Soh, “Robust adaptive gradient-descent training algorithm for recurrent neural networks in discrete time domain,” IEEE Trans. Neural Networks, vol. 19, no. 11, pp. 1841–1853, 2008. doi: 10.1109/TNN.2008.2001923
|
[30] |
R. A. Redner and H. F. Walker, “Mixture densities, maximum likelihood and the EM algorithm,” SIAM Review, vol. 26, no. 2, pp. 195–239, 1984. doi: 10.1137/1026034
|
[31] |
Y. Zhang, P. Zhou, and G. Cui, “Multi-model based PSO method for burden distribution matrix optimization with expected burden distribution output behaviors,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 6, pp. 1506–1512, 2018.
|
[32] |
Y. Wang and X. Zuo, “An effective cloud workflow scheduling approach combining PSO and idle time slot-aware rules,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 5, pp. 1079–1094, 2021. doi: 10.1109/JAS.2021.1003982
|
[33] |
Z. Lv, L. Wang, Z. Han, and J. Zhao, “Surrogate-assisted particle swarm optimization algorithm with Pareto active learning for expensive multi-objective optimization,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 3, pp. 838–849, 2019. doi: 10.1109/JAS.2019.1911450
|
[34] |
L.-F. Xu, Z.-S. Huang, Z.-Z. Yang, and W.-L. Ding, “Mixed particle swarm optimization algorithm with multistage disturbances,” J. Software, vol. 30, no. 6, pp. 1835–1852, 2019.
|