A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 9 Issue 12
Dec.  2022

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
J. Yang, X. X. Wang, and Y. D. Zhao, "Parallel Manufacturing for Industrial Metaverses: A New Paradigm in Smart Manufacturing, " IEEE/CAA J. Autom. Sinica, vol. 9, no. 12, pp.2063-2070, Dec. 2022. doi: 10.1109/JAS.2022.106097
Citation: J. Yang, X. X. Wang, and Y. D. Zhao, "Parallel Manufacturing for Industrial Metaverses: A New Paradigm in Smart Manufacturing, " IEEE/CAA J. Autom. Sinica, vol. 9, no. 12, pp.2063-2070, Dec. 2022. doi: 10.1109/JAS.2022.106097

Parallel Manufacturing for Industrial Metaverses: A New Paradigm in Smart Manufacturing

doi: 10.1109/JAS.2022.106097
More Information
  • To tackle the complexity of human and social factors in manufacturing systems, parallel manufacturing for industrial metaverses is proposed as a new paradigm in smart manufacturing for effective and efficient operations of those systems, where Cyber-Physical-Social Systems (CPSSs) and the Internet of Minds (IoM) are regarded as its infrastructures and the "Artificial systems", "Computational experiments" and "Parallel execution" (ACP) method is its methodological foundation for parallel evolution, closed-loop feedback, and collaborative optimization. In parallel manufacturing, social demands are analyzed and extracted from social intelligence for product R & D and production planning, and digital workers and robotic workers perform the majority of the physical and mental work instead of human workers, contributing to the realization of low-cost, high-efficiency and zero-inventory manufacturing. A variety of advanced technologies such as Knowledge Automation (KA), blockchain, crowdsourcing and Decentralized Autonomous Organizations (DAOs) provide powerful support for the construction of parallel manufacturing, which holds the promise of breaking the constraints of resource and capacity, and the limitations of time and space. Finally, the effectiveness of parallel manufacturing is verified by taking the workflow of customized shoes as a case, especially the unmanned production line named FlexVega.

     

  • loading
  • [1]
    B. Wang, F. Tao et al. , "Smart manufacturing and intelligent manufac-turing: A comparative review, " Eng. , vol. 7, no. 6, pp. 738–757, 2021. doi: 10.1016/j.eng.2020.07.017
    [2]
    M. Ghahramani, Y. Qiao et al. , "AI-based modeling and data-driven evaluation for smart manufacturing processes, " IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 1026–1037, 2020. doi: 10.1109/JAS.2020.1003114
    [3]
    H. Lasi, P. Fettke et al. , "Industry 4.0, " Bus. Inf. Syst. Eng. , vol. 6, no. 4, pp. 239–242, 2014. doi: 10.1007/s12599-014-0334-4
    [4]
    L. Li, "China's manufacturing locus in 2025: With a comparison of "Made-in-China 2025" and "Industry 4.0", " Technol. Forecast Soc. Change, vol. 135, pp. 66–74, 2018. doi: 10.1016/j.techfore.2017.05.028
    [5]
    W. Qin, S. Chen et al. , "Recent advances in Industrial Internet: Insights and challenges, " Digit. Commun. Netw. , vol. 6, no. 1, pp. 1–13, 2020. doi: 10.1016/j.dcan.2019.07.001
    [6]
    G. Huang, P. Wright, and S. T. Newman, "Wireless manufacturing: A literature review, recent developments, and case studies, " Int. J. Comput. Integr. Manuf. , vol. 22, no. 7, pp. 579–594, 2009. doi: 10.1080/09511920701724934
    [7]
    J. Y. Lee, S. S. Choi et al. , "Ubiquitous Product Life Cycle Management (u-PLM): A real-time and integrated engineering environment using ubiquitous technology in product life cycle management (PLM), " Int. J. Comput. Integr. Manuf. , vol. 24, no. 7, pp. 627–649, 2011. doi: 10.1080/0951192X.2011.569953
    [8]
    S. -H. Suh, S. -J. Shin et al. , "UbiDM: A new paradigm for product design and manufacturing via ubiquitous computing technology, " Int. J. Comput. Integr. Manuf. , vol. 21, no. 5, pp. 540–549, 2008. doi: 10.1080/09511920802023012
    [9]
    H. Meier, R. Roy et al. , "Industrial product-service systems—IPS2, " CIRP Ann. Manuf. Technol. , vol. 59, no. 2, pp. 607–627, 2010. doi: 10.1016/j.cirp.2010.05.004
    [10]
    L. Ren, L. Zhang, F. Tao et al. , "Cloud manufacturing: From concept to practice, " Enterp. Inf. Syst. , vol. 9, no. 2, pp. 186–209, 2015. doi: 10.1080/17517575.2013.839055
    [11]
    X. Xu, "From cloud computing to cloud manufacturing, " Robot. Comput. Integr. Manuf. , vol. 28, no. 1, pp. 75–86, 2012. doi: 10.1016/j.rcim.2011.07.002
    [12]
    F. Tao et al. , "Digital twin workshop: A new paradigm for future workshop, " Comput. Integr. Manuf. Syst. , vol. 23, no. 1, pp. 1–9, 2017.
    [13]
    L. Lattanzi, R. Raffaeli et al. , "Digital twin for smart manufacturing: A review of concepts towards a practical industrial implementation, " Int. J. Comput. Integr. Manuf. , vol. 34, no. 6, pp. 567–597, 2021. doi: 10.1080/0951192X.2021.1911003
    [14]
    B. B. Gupta, K. -C. Li et al. , "Blockchain-assisted secure fine-grained searchable encryption for a cloud-based healthcare cyber-physical system, " IEEE/CAA J. Autom. Sinica, vol. 8, no. 12, pp. 1877–1890, 2021. doi: 10.1109/JAS.2021.1004003
    [15]
    G. Franze, G. Fortino, X. Cao, G. M. L. Sarne, and Z. Song, "Resilient control in large-scale networked cyber-physical systems: Guest editorial, " IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1201–1203, 2020. doi: 10.1109/JAS.2020.1003327
    [16]
    F. -Y. Wang, "CAST lab: A cyber-social-physical approach for traffic control and transportation management, " ICSEC Technical Report, 1999.
    [17]
    F. -Y. Wang, Y. Yuan et al. , "Blockchainized Internet of Minds: A new opportunity for cyber–physical–social systems, " IEEE Trans. Comput. Soc. Syst. , vol. 5, no. 4, pp. 897–906, 2018. doi: 10.1109/TCSS.2018.2881344
    [18]
    J. Zhou, Y. Zhou, B. Wang, and J. Zang, "Human–cyber–physical systems (HCPSs) in the context of new-generation intelligent manu-facturing, " Eng. , vol. 5, no. 4, pp. 624–636, 2019. doi: 10.1016/j.eng.2019.07.015
    [19]
    X. Yao, J. Zhou, Y. Lin, Y. Li et al. , "Smart manufacturing based on cyber-physical systems and beyond, " J. Intell. Manuf. , vol. 30, no. 8, pp. 2805–2817, 2019. doi: 10.1007/s10845-017-1384-5
    [20]
    F. -Y. Wang, Y. Gao, X. Shang, and J. Zhang, "Parallel manufacturing and Industries 5.0: From virtual manufacturing to intelligent manufacturing, " Sci. Technol. Rev. , vol. 36, no. 21, pp. 10–22, 2018.
    [21]
    J. Wang, C. Liu, and M. Zhou, "Improved bacterial foraging algorithm for cell formation and product scheduling considering learning and forgetting factors in cellular manufacturing systems, " IEEE Syst. J. , vol. 14, no. 2, pp. 3047–3056, 2020. doi: 10.1109/JSYST.2019.2963222
    [22]
    B. Huang, M. Zhou, A. Abusorrah, and K. Sedraoui, "Scheduling robotic cellular manufacturing systems with timed petri net, a* search, and admissible heuristic function, " IEEE Trans. Autom. Sci. Eng. , vol. 19, no. 1, pp. 243–250, 2020.
    [23]
    F. -Y. Wang, "Artificial societies, computational experiments, and parallel systems: A discussion on computational theory of complex social-economic systems, " Complex Syst. Complex. Sci. , vol. 1, no. 4, pp. 25– 35, 2004.
    [24]
    J. Yang, X. Wang et al. , "Parallel manufacturing for footwear and garment flexible production, " Int. J. Intell. Control Syst. , vol. 1, no. 4, pp. 22–26, 2021.
    [25]
    J. Yang, X. Wang et al. , "Parallel workers in parallel manufacturing: From professional division to real-virtual division, " J. Intell. Sci. Technol. , vol. 2, no. 1, pp. 6–11, 2022.
    [26]
    F. -Y. Wang, "Parallel intelligence in metaverses: Welcome to Hanoi!" IEEE Intell. Syst. , vol. 37, no. 1, pp. 16–20, 2022. doi: 10.1109/MIS.2022.3154541
    [27]
    X. Wang, J. Yang, J. Han, W. Wang, and F. -Y. Wang, "Metaverses and DeMetaverses: From digital twins in CPS to parallel intelligence in CPSS, " IEEE Intell. Syst. , vol. 37, no. 4, pp. 97–102, 2022. doi: 10.1109/MIS.2022.3196592
    [28]
    F. -Y. Wang, "From social computing to social manufacturing: The coming industrial revolution and new frontier in cyber-physical-social space, " Bull. Chin. Acad. Sci. , vol. 27, no. 6, pp. 658–669, 2012.
    [29]
    Q. Wang, W. Jiao, P. Wang, and Y. Zhang, "Digital twin for human-robot interactive welding and welder behavior analysis, " IEEE/CAA J. Autom. Sinica, vol. 8, no. 2, pp. 334–343, 2020.
    [30]
    R. Qin, Y. Yuan, and F. -Y. Wang, "Blockchain-based knowledge automation for CPSS-oriented parallel management, " IEEE Trans. Comput. Soc. Syst. , vol. 7, no. 5, pp. 1180–1188, 2020. doi: 10.1109/TCSS.2020.3023046
    [31]
    S. Wang, L. Ouyang, Y. Yuan et al. , "Blockchain-enabled smart contracts: Architecture, applications, and future trends, " IEEE Trans. Syst. Man Cybern. Syst. , vol. 49, no. 11, pp. 2266–2277, 2019. doi: 10.1109/TSMC.2019.2895123
    [32]
    S. Wang, W. Ding et al. , "Decentralized autonomous organizations: Concept, model, and applications, " IEEE Trans. Comput. Soc. Syst. , vol. 6, no. 5, pp. 870–878, 2019. doi: 10.1109/TCSS.2019.2938190
    [33]
    S. Dustdar, P. Fernaxndez, J. M. Garcxıa, and A. Ruiz-Cortexs, "Elastic smart contracts in blockchains, " IEEE/CAA J. Autom. Sinica, vol. 8, no. 12, pp. 1901–1912, 2021. doi: 10.1109/JAS.2021.1004222
    [34]
    H. Lu, D. Cao, D. Tao, S. Dustdar, and P. Ho, "Guest editorial for special issue on cognitive computing for collaborative robotics, " IEEE/CAA J. Autom. Sinica, vol. 8, no. 7, pp. 1221–1221, 2021. doi: 10.1109/JAS.2021.1004042
    [35]
    Y. Ji, S. Liu, M. Zhou et al. , "A machine learning and genetic algorithm-based method for predicting width deviation of hot-rolled strip in steel production systems, " Inf. Sci. , vol. 589, pp. 360–375, 2022. doi: 10.1016/j.ins.2021.12.063
    [36]
    X. Li, P. Ye, J. Li, Z. Liu, L. Cao, and F. -Y. Wang, "From features engineering to scenarios engineering for trustworthy AI: I & I, C & C, and V & V, " IEEE Intell. Syst. , vol. 37, no. 4, pp. 18–26, 2022. doi: 10.1109/MIS.2022.3197950
    [37]
    I. Goodfellow, J. Pouget-Abadie et al. , "Generative adversarial networks, " Commun. ACM, vol. 63, no. 11, pp. 139–144, 2020. doi: 10.1145/3422622
    [38]
    A. Mishra et al., "A generative model for zero shot learning using conditional variational autoencoders, " in IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn. Workshops, 2018, pp. 2188–2196.
    [39]
    J. Ho, A. Jain, and P. Abbeel, "Denoising diffusion probabilistic models, " Adv. Neural Inf. Process. Syst. , vol. 33, pp. 6840–6851, 2020.
    [40]
    K. Zhang, Y. Su, X. Guo, L. Qi, and Z. Zhao, "MU-GAN: Facial attribute editing based on multi-attention mechanism, " IEEE/CAA J. Autom. Sinica, vol. 8, no. 9, pp. 1614–1626, 2020.
    [41]
    S. Harford, F. Karim, and H. Darabi, "Generating adversarial samples on multivariate time series using variational autoencoders, " IEEE/CAA J. Autom. Sinica, vol. 8, no. 9, pp. 1523–1538, 2021. doi: 10.1109/JAS.2021.1004108
    [42]
    P. Cai, Y. Sun, H. Wang, and M. Liu, "Vtgnet: A vision-based trajectory generation network for autonomous vehicles in urban environments, " IEEE Trans. Intell. Veh. , vol. 6, no. 3, pp. 419–429, 2021. doi: 10.1109/TIV.2020.3033878
    [43]
    M. Schutera, M. Hussein, J. Abhau, R. Mikut, and M. Reischl, "Night-to-day: Online image-to-image translation for object detection within autonomous driving by night, " IEEE Trans. Intell. Veh. , vol. 6, no. 3, pp. 480–489, 2021. doi: 10.1109/TIV.2020.3039456
    [44]
    F. -Y. Wang, "Toward a revolution in transportation operations: Ai for complex systems, " IEEE Intell. Syst. , vol. 23, no. 6, pp. 8–13, 2008. doi: 10.1109/MIS.2008.112
    [45]
    L. -J. Li et al. , "Parallel manufacturing for textile, footwear and garment industries, " Sci. Technol. Rev. , vol. 36, no. 21, pp. 48–55, 2018.
    [46]
    X. Niu and S. Qin, "A review of crowdsourcing technology for product design and development, " in IEEE Int. Conf. Autom. Comput. IEEE, 2017, pp. 1–6.
    [47]
    F. -Y. Wang, Y. Yuan, X. Wang, and R. Qin, "Societies 5.0: A new paradigm for computational social systems research, " IEEE Trans. Comput. Soc. Syst. , vol. 5, no. 1, pp. 2–8, 2018. doi: 10.1109/TCSS.2018.2797598
    [48]
    A. A. Sunday, M. I. Omolayo et al., "The role of production planning in enhancing an efficient manufacturing system–an overview, " in E3S Web Conf., vol. 309. EDP Sciences, 2021.
    [49]
    M. Al-Mashari, "Enterprise resource planning systems: A research agenda, " Industr. Manag. Data Syst. , vol. 103, no. 1, pp. 22–27, 2003. doi: 10.1108/02635570310456869
    [50]
    M. Al-Wswasi, A. Ivanov, and H. Makatsoris, "A survey on smart automated computer-aided process planning (ACAPP) techniques, " Int. J. Adv. Manuf. Technol. , vol. 97, no. 1, pp. 809–832, 2018.
    [51]
    Y. Ye, "Research on process planning method for intelligent CNC controller based on cloud knowledge based, " Ph. D. dissertation, Shandong University, 2019.
    [52]
    R. T. Gali, Computer Aided Process Planning System for Generating Alternative Process Plans. Western Michigan University, 1991.
    [53]
    K. Wang, C. Gou et al. , "Parallel vision for perception and understanding of complex scenes: Methods, framework, and perspectives, " Artif. Intell. Rev. , vol. 48, no. 3, pp. 299–329, 2017. doi: 10.1007/s10462-017-9569-z
    [54]
    Y. Chen, Y. Lv, and F. -Y. Wang, "Traffic flow imputation using parallel data and generative adversarial networks, " IEEE trans. Intell. Transp. Syst. , vol. 21, no. 4, pp. 1624–1630, 2019.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (668) PDF downloads(211) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return