A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 9 Issue 12
Dec.  2022

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
J. W. Lu, X. X. Wang, X. Cheng, J. Yang, O. Kwan, and X. Wang, "Parallel factories for smart industrial operations: From big AI models to field foundational models and scenarios engineering, " IEEE/CAA J. Autom. Sinica, vol. 9, no. 12, pp.2079-2086, Dec. 2022. doi: 10.1109/JAS.2022.106094
Citation: J. W. Lu, X. X. Wang, X. Cheng, J. Yang, O. Kwan, and X. Wang, "Parallel factories for smart industrial operations: From big AI models to field foundational models and scenarios engineering, " IEEE/CAA J. Autom. Sinica, vol. 9, no. 12, pp.2079-2086, Dec. 2022. doi: 10.1109/JAS.2022.106094

Parallel Factories for Smart Industrial Operations: From Big AI Models to Field Foundational Models and Scenarios Engineering

doi: 10.1109/JAS.2022.106094
More Information
  • The rapid advancement of fundamental theories and computing capacity has brought artificial intelligence, internet of things, extended reality, and many other new intelligent technologies into our daily lives. Due to the lack of interpretability and reliability guarantees, it is extremely challenging to apply these technologies directly to real-world industrial systems. Here we present a new paradigm for establishing parallel factories in metaverses to accelerate the deployment of intelligent technologies in real-world industrial systems: QAII-1.0. Based on cyber-physical-social systems, QAII-1.0 incorporates complex social and human factors into the design and analysis of industrial operations and is capable of handling industrial operations involving complex social and human behaviors. In QAII-1.0, a field foundational model called EuArtisan combined with scenarios engineering is developed to improve the intelligence of industrial systems while ensuring industrial interpretability and reliability. Finally, parallel oil fields in metaverses are established to demonstrate the operating procedure of QAII-1.0.


  • loading
  • [1]
    F. -Y. Wang, Y. Gao, X. Shang, and J. Zhang, "Parallel manufacturing and industries 5.0: From virtual manufacturing to intelligent manufacturing, " Sci. & Technol. Rev. , vol. 36, no. 21, pp. 10–22, 2018.
    M. Al-Sharman, D. Murdoch, D. Cao, C. Lv, Y. Zweiri, D. Rayside, and W. Melek, "A sensorless state estimation for a safety-oriented cyber-physical system in urban driving: Deep learning approach, " IEEE/CAA J. Autom. Sinica, vol. 8, no. 1, pp. 169–178, Jan. 2021. doi: 10.1109/JAS.2020.1003474
    A. White, A. Karimoddini, and M. Karimadini, "Resilient fault diagnosis under imperfect observations-a need for industry 4.0 era, " IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1279–1288, Sept. 2020.
    Q. Wang, W. Jiao, P. Wang, and Y. Zhang, "Digital twin for human-robot interactive welding and welder behavior analysis, " IEEE/CAA J. Autom. Sinica, vol. 8, no. 2, pp. 334–343, Feb. 2021. doi: 10.1109/JAS.2020.1003518
    M. Ghahramani, Y. Qiao, M. C. Zhou, A. O'Hagan, and J. Sweeney, "AI-based modeling and data-driven evaluation for smart manufacturing processes, " IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 1026–1037, Jul. 2020. doi: 10.1109/JAS.2020.1003114
    F. -Y. Wang, "The emergence of intelligent enterprises: From CPS to CPSS, " IEEE Intell. Syst. , vol. 25, no. 4, pp. 85–88, Jul. -Aug. 2010. doi: 10.1109/MIS.2010.104
    D. Zhu, W. Gan, Z. Hu, L. Yang, X. Shi, and Y. Chen, "A hybrid control strategy of 7000 m-human occupied vehicle tracking control, " IEEE Trans. Intell. Veh. , vol. 5, no. 2, pp. 251–264, Jun. 2020. doi: 10.1109/TIV.2019.2955901
    A. O. Ly and M. Akhloufi, "Learning to drive by imitation: An overview of deep behavior cloning methods, " IEEE Trans. Intell. Veh. , vol. 6, no. 2, pp. 195–209, Jun. 2021. doi: 10.1109/TIV.2020.3002505
    L. -Y. Yang, S. -Y. Chen, X. Wang, J. Zhang, and C. -H. Wang, "Digital twins and parallel systems: State of the art, comparisons and prospect, " Acta Automat. Sin. , vol. 45, no. 11, pp. 2001 – 2031, Nov. 2019.
    Z. Wang, X. Liao, C. Wang, D. Oswald, G. Wu, K. Boriboonsomsin, M. J. Barth, K. Han, B. Kim, and P. Tiwari, "Driver behavior modeling using game engine and real vehicle: A learning-based approach, " IEEE Trans. Intell. Veh. , vol. 5, no. 4, pp. 738–749, Dec. 2020. doi: 10.1109/TIV.2020.2991948
    The metaverse: Concepts and issues for congress. [Online]. Available: https://crsreports.congress.gov/product/pdf/R/R47224
    F. -Y. Wang, "Parallel intelligence in metaverses: Welcome to Hanoi!" IEEE Intell. Syst. , vol. 37, no. 1, pp. 16–20, Jan. -Feb. 2022. doi: 10.1109/MIS.2022.3154541
    X. Wang, J. Yang, J. Han, W. Wang, and F. -Y. Wang, "Metaverses and DeMetaverses: From digital twins in CPS to parallel intelligence in CPSS, " IEEE Intell. Syst. , vol. 37, no. 4, pp. 97–102, Jul. -Aug. 2022. doi: 10.1109/MIS.2022.3196592
    J. Lu, Q. Wei, Z. Wang et al. , "Event-triggered optimal control for discrete-time multi-player non-zero-sum games using parallel control, " Inf. Sci. , vol. 584, pp. 519–535, Jan. 2022. doi: 10.1016/j.ins.2021.10.073
    J. Lu, Q. Wei, Y. Liu, T. Zhou, and F. -Y. Wang, "Event-triggered optimal parallel tracking control for discrete-time nonlinear systems, " IEEE Trans. Syst., Man, Cybern., Syst, vol. 52, no. 6, pp. 3772–3784, Jun. 2022. doi: 10.1109/TSMC.2021.3073429
    C. Zhao, Y. Lv, J. Jin, Y. Tian, J. Wang, and F. -Y. Wang, "DeCAST in TransVerse for parallel intelligent transportation systems and smart cities: Three decades and beyonds, " IEEE Intell. Transp. Syst. Mag. , vol. 14, no. 6, pp. 6–17, Nov. -Dec. 2022. doi: 10.1109/MITS.2022.3199557
    F. -Y. Wang, "Parallel system methods for management and control of complex systems, " Control Decis. , vol. 19, no. 5, pp. 485–489, May 2004.
    Q. Wei, H. Li, and F. -Y. Wang, "Parallel control for continuous-time linear systems: A case study, " IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 919–926, Jul. 2020. doi: 10.1109/JAS.2020.1003216
    J. Lu, Q. Wei, and F. -Y. Wang, "Parallel control for optimal tracking via adaptive dynamic programming, " IEEE/CAA J. Autom. Sinica, vol. 7, no. 6, pp. 1662–1674, Nov. 2020. doi: 10.1109/JAS.2020.1003426
    J. Lu, X. Cheng, X. Wang, and F. -Y. Wang, "Parallel control of permanent magnet synchronous motors via backstepping, " Int. J. Control Syst. , vol. 1, no. 4, pp. 16–21, 2021.
    J. Lu, Q. Wei, T. Zhou, Z. Wang, and F. -Y. Wang, "Event-triggered near-optimal control for unknown discrete-time nonlinear systems using parallel control, " IEEE Trans. Cybern. , May 2022, DOI: 10.1109/TCYB.2022.3164977.
    L. Li, Y. Lin, N. Zheng, and F. -Y. Wang, "Parallel learning: A perspective and a framework, " IEEE/CAA J. Autom. Sinica, vol. 4, no. 3, pp. 389–395, Jul. 2017. doi: 10.1109/JAS.2017.7510493
    R. Bommasani, D. A. Hudson, E. Adeli et al., "On the opportunities and risks of foundation models, " arXiv: 2108.07258, 2021.
    C. Raffel, N. Shazeer, A. Roberts, K. Lee et al. , "Exploring the limits of transfer learning with a unified text-to-text Transformer, " J. Mach. Learn. Res. , vol. 21, no. 140, pp. 1–67, 2020.
    J. Jumper, R. Evans, A. Pritzel et al. , "Highly accurate protein structure prediction with AlphaFold, " Nature, vol. 596, no. 7873, pp. 583–589, 2021. doi: 10.1038/s41586-021-03819-2
    J. Devlin, M. -W. Chang, K. Lee, and K. Toutanova, "BERT: Pre-training of deep bidirectional transformers for language understanding, " in Proc. Conf. North Amer. Chapter Assoc. Comput. Linguistics, Hum. Lang. Technol., 2019, pp. 4171–4186.
    T. Brown, B. Mann, N. Ryder et al., "Language models are few-shot learners, " in Proc. Conf. Neural Inf. Process. Syst, 2020, pp. 1877–1901.
    A. Radford, J. W. Kim, C. Hallacy et al., "Learning transferable visual models from natural language supervision, " in Proc. Int. Conf. Mach. Learn., 2021, pp. 8748–8763.
    A. Chowdhery, S. Narang, J. Devlin et al., "PaLM: Scaling language modeling with pathways, " arXiv: 2204.02311, 2022.
    J. -B. Alayrac, J. Donahue, P. Luc et al., "Flamingo: A visual language model for few-shot learning, " arXiv: 2204.14198, 2022.
    H. Bao, L. Dong, S. Piao, and F. Wei, "BEiT: BERT pre-training of image transformers, " in Proc. Int. Conf. Learn. Represent., 2022.
    W. Kim, B. Son, and I. Kim, "ViLT: Vision-and-language transformer without convolution or region supervision, " in Proc. Int. Conf. Mach. Learn., 2021, pp. 5583–5594.
    X. Zhai, X. Wang, B. Mustafa, A. Steiner, D. Keysers, A. Kolesnikov, and L. Beyer, "LiT: Zero-shot transfer with locked-image text tuning, " in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2022, pp. 18 123–18 133.
    N. Fei, Z. Lu, Y. Gao et al. , "Towards artificial general intelligence via a multimodal foundation model, " Nat. Commun. , pp. 1–13, 2022.
    J. Lu, X. Wang, X. Cheng, and F. -Y. Wang, "Towards field foundational models: A case study of sucker rod pumping systems, " J. Intell. Sci. Technol. , vol. 2, no. 2, pp. 18–23, 2022.
    X. Li, P. Ye, J. Li, Z. Liu, L. Cao, and F. -Y. Wang, "From features engineering to scenarios engineering for trustworthy AI: I & I, C & C, and V & V, " IEEE Intell. Syst. , vol. 37, no. 4, pp. 18–26, Jul. -Aug. 2022. doi: 10.1109/MIS.2022.3197950
    F. -Y. Wang, "The engineering of intelligence: DAO to I & I, C & C, and V & V for intelligent systems, " Int. J. Control Syst. , vol. 1, no. 3, pp. 1–5, 2021.


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (630) PDF downloads(316) Cited by()


    DownLoad:  Full-Size Img  PowerPoint