A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 9 Issue 12
Dec.  2022

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Y. T. Wang, Y. L. Tian, J. G. Wang, Y. S. Cao, S. X. Li, and B. Tian, "Integrated Inspection of QoM, QoP, and QoS for AOI Industries in Metaverses, " IEEE/CAA J. Autom. Sinica, vol. 9, no. 12, pp.2071-2078, Dec. 2022. doi: 10.1109/JAS.2022.106091
Citation: Y. T. Wang, Y. L. Tian, J. G. Wang, Y. S. Cao, S. X. Li, and B. Tian, "Integrated Inspection of QoM, QoP, and QoS for AOI Industries in Metaverses, " IEEE/CAA J. Autom. Sinica, vol. 9, no. 12, pp.2071-2078, Dec. 2022. doi: 10.1109/JAS.2022.106091

Integrated Inspection of QoM, QoP, and QoS for AOI Industries in Metaverses

doi: 10.1109/JAS.2022.106091
More Information
  • With the rapid development of information technologies such as digital twin, extended reality, and blockchain, the hype around "metaverse" is increasing at astronomical speed. However, much attention has been paid to its entertainment and social functions. Considering the openness and interoperability of metaverses, the market of quality inspection promises explosive growth. In this paper, taking advantage of metaverses, we first propose the concept of Automated Quality Inspection (AutoQI), which performs integrated inspection covering the entire manufacturing process, including Quality of Materials, Quality of Manufacturing (QoM), Quality of Products, Quality of Processes (QoP), Quality of Systems, and Quality of Services (QoS). Based on the scenarios engineering theory, we discuss how to perform interactions between metaverses and the physical world for virtual design instruction and physical validation feedback. Then we introduce a bottom-up inspection device development workflow with productivity tools offered by metaverses, making development more effective and efficient than ever. As the core of quality inspection, we propose Quality Transformers to complete detection task, while federated learning is integrated to regulate data sharing. In summary, we point out the development directions of quality inspection under metaverse tide.


  • loading
  • [1]
    L. Chen, Z. You, N. Zhang, J. Xi, and X. Le, "Utrad: Anomaly detection and localization with u-transformer, " Neural Networks, vol. 147, pp. 53–62, 2022. doi: 10.1016/j.neunet.2021.12.008
    S. Hong and J. Chae, "Communication-efficient randomized algorithm for multi-kernel online federated learning, " IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.
    Y. Wang, Z. Su, N. Zhang, R. Xing, D. Liu, T. H. Luan, and X. Shen, "A survey on metaverse: Fundamentals, security, and privacy, " IEEE Communications Surveys & Tutorials, 2022.
    Q. Wang, W. Jiao, P. Wang, and Y. Zhang, "Digital twin for human-robot interactive welding and welder behavior analysis, " IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 2, pp. 334–343, 2020. doi: 10.1109/JAS.2020.1003518
    Y. Zick, G. Chalkiadakis, E. Elkind, and E. Markakis, "Cooperative games with overlapping coalitions: Charting the tractability frontier, " Artificial Intelligence, vol. 271, pp. 74–97, 2019. doi: 10.1016/j.artint.2018.11.006
    L. -H. Lee, T. Braud, P. Zhou, L. Wang, D. Xu, Z. Lin, A. Kumar, C. Bermejo, and P. Hui, "All one needs to know about metaverse: A complete survey on technological singularity, virtual ecosystem, and research agenda, " arXiv preprint arXiv: 2110.05352, 2021.
    M. Schutera, M. Hussein, J. Abhau, R. Mikut, and M. Reischl, "Night-to-day: Online image-to-image translation for object detection within autonomous driving by night, " IEEE Transactions on Intelligent Vehicles, vol. 6, no. 3, pp. 480–489, 2021. doi: 10.1109/TIV.2020.3039456
    A. Kasmi, J. Laconte, R. Aufrère, D. Denis, and R. Chapuis, "End-to-end probabilistic ego-vehicle localization framework, " IEEE Transactions on Intelligent Vehicles, vol. 6, no. 1, pp. 146–158, 2021. doi: 10.1109/TIV.2020.3017256
    S. Dustdar, P. Fernaxndez, J. M. Garcxıa, and A. Ruiz-Cortexs, "Elastic smart contracts in blockchains, " IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 12, pp. 1901–1912, 2021. doi: 10.1109/JAS.2021.1004222
    W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, "Edge computing: Vision and challenges, " IEEE internet of things journal, vol. 3, no. 5, pp. 637–646, 2016. doi: 10.1109/JIOT.2016.2579198
    J. Lee and P. Kundu, "Integrated cyber-physical system and industrial metaverse for remote manufacturing, " Manufacturing Letters, 2022.
    L. Yang, B. Li, W. Li, H. Brand, B. Jiang, and J. Xiao, "Concrete defects inspection and 3D mapping using cityflyer quadrotor robot, " IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 4, 2020. doi: 10.1109/JAS.2020.1003234
    H. -C. Liao, Z. -Y. Lim, Y. -X. Hu, and H. -W. Tseng, "Guidelines of automated optical inspection (AOI) system development, " in 2018 IEEE 3rd International Conference on Signal and Image Processing. IEEE, 2018, pp. 362–366.
    M. Abd Al Rahman and A. Mousavi, "A review and analysis of automatic optical inspection and quality monitoring methods in electronics industry, " IEEE Access, vol. 8, pp. 183 192–183 271, 2020.
    J. Liang, J. Cao, G. Sun, K. Zhang, L. Van Gool, and R. Timofte, "SwinIR: Image restoration using swin transformer, " in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 1833–1844.
    Z. Zeng, B. Liu, J. Fu, and H. Chao, "Reference-based defect detection network, " IEEE Transactions on Image Processing, vol. 30, pp. 6637–6647, 2021. doi: 10.1109/TIP.2021.3096067
    J. C. Jensen, D. H. Chang, and E. A. Lee, "A model-based design methodology for cyber-physical systems, " in International Wireless Communications and Mobile Computing Conference. IEEE, 2011, pp. 1666–1671.
    R. Masoni, F. Ferrise, M. Bordegoni, M. Gattullo, A. E. Uva, M. Fiorentino, E. Carrabba, and M. Di Donato, "Supporting remote maintenance in industry 4.0 through augmented reality, " Procedia Manufacturing, vol. 11, pp. 1296–1302, 2017. doi: 10.1016/j.promfg.2017.07.257
    Y. Wang, J. Wang, Y. Tian, and F. -Y. Wang, "ACP-based automated quality inspection for PCB industry, " International Journal of Intelligent Control and Systems, vol. 1, no. 3, pp. 6–11, 2021.
    Y. Wang, J. Wang, Y. Tian, and F. -Y. Wang, "Digital workers for PCB inspection in cyber-physical-social systems, " Journal of Intelligent Science and Technology, vol. 2, no. 1, pp. 12–17, 2022.
    Y. Lin, J. McPhee, and N. L. Azad, "Comparison of deep reinforcement learning and model predictive control for adaptive cruise control, " IEEE Transactions on Intelligent Vehicles, vol. 6, no. 2, pp. 221–231, 2021. doi: 10.1109/TIV.2020.3012947
    X. Li, P. Ye, J. Li, Z. Liu, L. Cao, and F. -Y. Wang, "From features engineering to scenarios engineering for trustworthy AI: I & I, C & C, and V & V, " IEEE Intelligent Systems, vol. 37, no. 4, pp. 18–26, 2022. doi: 10.1109/MIS.2022.3197950
    C. Li, H. Huang, J. -M. Lien, and L. -F. Yu, "Synthesizing scene-aware virtual reality teleport graphs, " ACM Transactions on Graphics, vol. 40, no. 6, pp. 1–15, 2021.
    D. Xu, W. Shi, W. Zhai, and Z. Tian, "Multi-candidate voting model based on blockchain, " IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 12, pp. 1891–1900, 2021. doi: 10.1109/JAS.2021.1004207
    Y. Tian, J. Wang, Y. Wang, C. Zhao, F. Yao, and X. Wang, "Federated vehicular transformers and their federations: Privacy-preserving computing and cooperation for autonomous driving, " IEEE Transactions on Intelligent Vehicles, vol. 7, no. 3, pp. 456–465, 2022.
    R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein, J. Bohg, A. Bosselut, E. Brunskill et al., "On the opportunities and risks of foundation models, " arXiv preprint arXiv: 2108.07258, 2021.
    Q. Yang, Y. Liu, Y. Cheng, Y. Kang, T. Chen, and H. Yu, "Federated learning, " Synthesis Lectures on Artificial Intelligence and Machine Learning, vol. 13, no. 3, pp. 1–207, 2019.
    E. F. Ohata, G. M. Bezerra, J. V. S. das Chagas, A. V. L. Neto, A. B. Albuquerque, V. H. C. de Albuquerque, and P. P. Reboucas Filho, "Automatic detection of covid-19 infection using chest x-ray images through transfer learning, " IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 1, pp. 239–248, 2020. doi: 10.1109/JAS.2020.1003393
    F. -Y. Wang, "Parallel system methods for management and control of complex systems, " Control and Decision, vol. 19, pp. 485–489, 2004.
    F. -Y. Wang, "Parallel control and management for intelligent trans-portation systems: Concepts, architectures, and applications, " IEEE Transactions on Intelligent Transportation Systems, vol. 11, no. 3, pp. 630–638, 2010.
    P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar, "Split learning for health: Distributed deep learning without sharing raw patient data, " arXiv preprint arXiv: 1812.00564, 2018.


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (679) PDF downloads(222) Cited by()


    DownLoad:  Full-Size Img  PowerPoint