A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 9 Issue 12
Dec.  2022

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
H. F. Huang, W. He, Q. Fu, X. Y. He, and C. Y. Sun, “A bio-inspired flapping-wing robot with cambered wings and its application in autonomous airdrop,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 12, pp. 2138–2150, Dec. 2022. doi: 10.1109/JAS.2022.106040
Citation: H. F. Huang, W. He, Q. Fu, X. Y. He, and C. Y. Sun, “A bio-inspired flapping-wing robot with cambered wings and its application in autonomous airdrop,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 12, pp. 2138–2150, Dec. 2022. doi: 10.1109/JAS.2022.106040

A Bio-Inspired Flapping-Wing Robot With Cambered Wings and Its Application in Autonomous Airdrop

doi: 10.1109/JAS.2022.106040
Funds:  This work was supported in part by the National Natural Science Foundation of China (62225304, 61933001, 61921004, 62173031), in part by the Beijing Municipal Natural Science Foundation (JQ20026), and in part by the Beijing Top Discipline for Artificial Intelligent Science and Engineering, University of Science and Technology Beijing
More Information
  • Flapping-wing flight, as the distinctive flight method retained by natural flying creatures, contains profound aerodynamic principles and brings great inspirations and encouragements to drone developers. Though some ingenious flapping-wing robots have been designed during the past two decades, development and application of autonomous flapping-wing robots are less successful and still require further research. Here, we report the development of a servo-driven bird-like flapping-wing robot named USTBird-I and its application in autonomous airdrop. Inspired by birds, a camber structure and a dihedral angle adjustment mechanism are introduced into the airfoil design and motion control of the wings, respectively. Computational fluid dynamics simulations and actual flight tests show that this bionic design can significantly improve the gliding performance of the robot, which is beneficial to the execution of the airdrop mission. Finally, a vision-based airdrop experiment has been successfully implemented on USTBird-I, which is the first demonstration of a bird-like flapping-wing robot conducting an outdoor airdrop mission.

     

  • loading
  • [1]
    G. de Croon, “Flapping wing drones show off their skills,” Sci. Robot., vol. 5, no. 44, p. eabd0233, 2020. doi: 10.1126/scirobotics.abd0233
    [2]
    V. Arabagi, L. Hines, and M. Sitti, “Design and manufacturing of a controllable miniature flapping wing robotic platform,” Int. J. Robot. Res., vol. 31, no. 6, pp. 785–800, 2012. doi: 10.1177/0278364911434368
    [3]
    U. Pesavento and Z. J. Wang, “Flapping wing flight can save aerodynamic power compared to steady flight,” Phys. Rev. Lett., vol. 103, no. 11, p. 118102, 2009. doi: 10.1103/PhysRevLett.103.118102
    [4]
    M. Karasek, “Good vibrations for flapping-wing flyers,” Sci. Robot., vol. 5, no. 46, p. eabe4544, 2020. doi: 10.1126/scirobotics.abe4544
    [5]
    D. Floreano and R. J. Wood, “Science, technology and the future of small autonomous drones,” Nature, vol. 521, no. 7553, pp. 460–466, 2015. doi: 10.1038/nature14542
    [6]
    W. He, X. Mu, L. Zhang, and Y. Zou, “Modeling and trajectory tracking control for flapping-wing micro aerial vehicles,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 1, pp. 148–156, Jan. 2021. doi: 10.1109/JAS.2020.1003417
    [7]
    G. Bao, Y. Zhang, and Z. Zeng, “Memory analysis for memristors and memristive recurrent neural networks,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 96–105, Jan. 2019.
    [8]
    Z. Li, X. Li, Q. Li, H. Su, Z. Kan, and W. He, “Human-in-the-loop control of soft exosuits using impedance learning on different terrains,” IEEE Trans. Robot., vol. 38, no. 5, pp. 2979–2993, 2022.
    [9]
    J. Liu, S. Vazquez, L. Wu, A. Marquez, H. Gao, and L. G. Franquelo, “Extended state observer-based sliding-mode control for three-phase power converters,” IEEE Trans. Ind. Electron., vol. 64, no. 1, pp. 22–31, Jan. 2016.
    [10]
    J. Liu, L. Wu, C. Wu, W. Luo, and L. G. Franquelo, “Event-triggering dissipative control of switched stochastic systems via sliding mode,” Automatica, vol. 103, pp. 261–273, 2019. doi: 10.1016/j.automatica.2019.01.029
    [11]
    X. Jin, “Fault tolerant finite-time leadercfollower formation control for autonomous surface vessels with LOS range and angle constraints,” Automatica, vol. 68, pp. 228–236, 2016. doi: 10.1016/j.automatica.2016.01.064
    [12]
    X. Jin, “Adaptive fixed-time control for MIMO nonlinear systems with asymmetric output constraints using universal barrier functions,” IEEE Trans. Automat. Contr., vol. 64, no. 7, pp. 3046–3053, Oct. 2019. doi: 10.1109/TAC.2018.2874877
    [13]
    Z. Li, B. Huang, A. Ajoudani, C. Yang, C.-Y. Su, and A. Bicchi, “Asymmetric bimanual control of dual-arm exoskeletons for human-cooperative manipulations,” IEEE Trans. Robot., vol. 34, no. 1, pp. 264–271, Nov. 2017.
    [14]
    J. Chen and H. Qiao, “Muscle-synergies-based neuromuscular control for motion learning and generalization of a musculoskeletal system,” IEEE Trans. Syst.,Man,Cybern. A, vol. 51, no. 6, pp. 3993–4006, Jan. 2020.
    [15]
    J. Xie, S.-Y. Liu, and J.-X. Chen, “A framework for distributed semi-supervised learning using single-layer feedforward networks,” Machine Intelligence Research, vol. 19, no. 1, pp. 63–74, 2022. doi: 10.1007/s11633-022-1315-6
    [16]
    Z. Li, K. Zhao, L. Zhang, X. Wu, T. Zhang, Q. Li, X. Li, and C.-Y. Su, “Human-in-the-loop control of a wearable lower limb exoskeleton for stable dynamic walking,” IEEE/ASME Trans. Mechatronics, vol. 26, no. 5, pp. 2700–2711, Oct. 2020.
    [17]
    Q.-L. Dang, W. Xu, and Y.-F. Yuan, “A dynamic resource allocation strategy with reinforcement learning for multimodal multi-objective optimization,” Machine Intelligence Research, DOI: 10.1007/s11633-022-1314-7.
    [18]
    L. Kong, W. He, W. Chen, H. Zhang, and Y. Wang, “Dynamic movement primitives based robot skills learning,” Machine Intelligence Research.
    [19]
    A. Ramezani, S.-J. Chung, and S. Hutchinson, “A biomimetic robotic platform to study flight specializations of bats,” Sci. Robot., vol. 2, no. 3, p. eeal2505, 2017. doi: 10.1126/scirobotics.aal2505
    [20]
    Y. Zou, W. Zhang, and Z. Zhang, “Liftoff of an electromagnetically driven insect-inspired flapping-wing robot,” IEEE Trans. Robot., vol. 32, no. 5, pp. 1285–1289, Oct. 2016. doi: 10.1109/TRO.2016.2593449
    [21]
    R. J. Wood, “The first takeoff of a biologically inspired at-scale robotic insect,” IEEE Trans. Robot., vol. 24, no. 2, pp. 341–347, Dec. 2008. doi: 10.1109/TRO.2008.916997
    [22]
    K. Y. Ma, Chirarattananon, S. B. Fuller, and R. J. Wood, “Controlled flight of a biologically inspired, insect-scale robot,” Science, vol. 340, no. 6132, pp. 603–607, 2013. doi: 10.1126/science.1231806
    [23]
    Y. Chen, H. Wang, E. F. Helbling, N. T. Jafferis, R. Zufferey, A. Ong, K. Ma, N. Gravish, P. Chirarattananon, and M. Kovac, “A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot,” Sci. Robot., vol. 2, p. eaao5619, 2017.
    [24]
    N. T. Jafferis, E. F. Helbling, M. Karpelson, and R. J. Wood, “Untethered flight of an insect-sized flapping-wing microscale aerial vehicle,” Nature, vol. 570, no. 7762, pp. 491–495, 2019. doi: 10.1038/s41586-019-1322-0
    [25]
    G. C. De Croon, M. Groen, C. De Wagter, B. D. Remes, R. Ruijsink, and B. W. van Oudheusden, “Design, aerodynamics and autonomy of the delfly,” Bioinspir. Biomim., vol. 7, no. 2, p. 025003, 2012. doi: 10.1088/1748-3182/7/2/025003
    [26]
    C. De Wagter, S. Tijmons, B. D. Remes, and G. C. De Croon, “Autonomous flight of a 20-gram flapping wing mav with a 4-gram onboard stereo vision system,” in Proc. IEEE Int. Conf. Robot. Automat., 2014, pp. 4982–4987.
    [27]
    M. Karásek, F. T. Muijres, C. De Wagter, B. D. Remes, and G. C. De Croon, “A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns,” Science, vol. 361, no. 6407, pp. 1089–1094, 2018. doi: 10.1126/science.aat0350
    [28]
    H. V. Phan, S. Aurecianus, T. Kang, and H. C. Park, “Kubeetle-s: An insect-like, tailless, hover-capable robot that can fly with a low-torque control mechanism,” Int. J. Mic. Air Veh., vol. 11, p. 175682931986137, 2019.
    [29]
    H. V. Phan and H. Park, “Mechanisms of collision recovery in flying beetles and flapping-wing robots,” Science, vol. 370, no. 6521, pp. 1214–1219, 2020. doi: 10.1126/science.abd3285
    [30]
    D. Mackenzie, “A flapping of wings,” Science, vol. 335, no. 6075, pp. 1430–1433, 2012. doi: 10.1126/science.335.6075.1430
    [31]
    W. Yang, L. Wang, and B. Song, “Dove: A biomimetic flapping-wing micro air vehicle,” Int. J. Mic. Air Veh., vol. 10, no. 1, pp. 70–84, 2018. doi: 10.1177/1756829317734837
    [32]
    R. Zufferey, J. Tormo-Barbero, M. M. Guzmán, F. J. Maldonado, E. Sanchez-Laulhe, Gr au, M. Pérez, J. Á. Acosta, and A. Ollero, “Design of the high-payload flapping wing robot e-flap,” IEEE Robot. Autom. Lett., vol. 6, no. 2, pp. 3097–3104, Feb. 2021. doi: 10.1109/LRA.2021.3061373
    [33]
    J. Gerdes, A. Holness, A. Perez-Rosado, L. Roberts, A. Greisinger, E. Barnett, J. Kempny, D. Lingam, C.-H. Yeh, H. Bruck, and S. Gupta, “Robo raven: A flapping-wing air vehicle with highly compliant and independently controlled wings,” Soft Robot., vol. 1, no. 4, pp. 275–288, 2014. doi: 10.1089/soro.2014.0019
    [34]
    Z. Liu, Z. Han, Z. Zhao, and W. He, “Modeling and adaptive control for a spatial flexible spacecraft with unknown actuator failures,” Sci. China Inf. Sci., vol. 64, no. 5, pp. 1–16, 2021.
    [35]
    H. Lin, B. Zhao, D. Liu, and C. Alippi, “Data-based fault tolerant control for affine nonlinear systems through particle swarm optimized neural networks,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 954–964, Jul. 2020. doi: 10.1109/JAS.2020.1003225
    [36]
    Y. Liu, X. Chen, Y. Mei, and Y. Wu, “Observer-based boundary control for an asymmetric output-constrained flexible robotic manipulator,” Sci. China Inf. Sci., vol. 65, no. 3, pp. 1–3, 2022.
    [37]
    Y. Liu, X. Chen, Y. Wu, H. Cai, and H. Yokoi, “Adaptive neural network control of a flexible spacecraft subject to input nonlinearity and asymmetric output constraint,” IEEE Trans. Neural. Netw. Learn. Syst., DOI: 10.1109/TNNLS.2021.3072907, 2021.
    [38]
    Q. Fu, J. Wang, L. Gong, J. Wang, and W. He, “Obstacle avoidance of flapping-wing air vehicles based on optical flow and fuzzy control,” Transactions of Nanjing University of Aeronautics &Astronautics, vol. 38, no. 2, pp. 206–215, 2021.
    [39]
    Q. Fu, X. Wang, Y. Zou, and W. He, “A miniature video stabilization system for flapping-wing aerial vehicles,” Guidance,Navigation and Control, vol. 2, no. 1, p. 2250001, 2022. doi: 10.1142/S2737480722500017
    [40]
    P. Bai, E.-j. Cui, and H.-l. Zhan, “Aerodynamic characteristics, power requirements and camber effects of the pitching-down flapping hovering,” J. Bionic Eng., vol. 6, no. 2, pp. 120–134, 2009. doi: 10.1016/S1672-6529(08)60109-2
    [41]
    J. Gillies, A. Thomas, and G. Taylor, “Soaring and manoeuvring flight of a steppe eagle aquila nipalensis,” J. Avian Biol., vol. 42, no. 09, pp. 377–386, 2011.
    [42]
    H. V. Phan and H. Park, “Insect-inspired, tailless, hover-capable flapping-wing robots: Recent progress, challenges, and future directions,” Prog. Aerosp. Sci., vol. 111, p. 100573, 2019. doi: 10.1016/j.paerosci.2019.100573
    [43]
    R. J. Wood, E. Steltz, and R. Fearing, “Optimal energy density piezoelectric bending actuators,” Sens. Actuator A Phys., vol. 119, no. 2, pp. 476–488, 2005. doi: 10.1016/j.sna.2004.10.024
    [44]
    S.-G. Lee, H.-C. Park, S. D. Pandita, and Y. Yoo, “Performance improvement of IPMC (ionic polymer metal composites) for a flapping actuator,” Int. J. Control. Autom., vol. 4, no. 6, pp. 748–755, 2006.
    [45]
    S. N. Fry, R. Sayaman, and M. H. Dickinson, “The aerodynamics of free-flight maneuvers in drosophila,” Science, vol. 300, no. 5618, pp. 495–498, 2003. doi: 10.1126/science.1081944
    [46]
    V. A. Tucker, T. Cade, and A. E. Tucker, “Diving speeds and angles of a gyrfalcon (falco rusticolus),” J. Exp. Biol., vol. 201, no. 13, pp. 2061–2070, 1998. doi: 10.1242/jeb.201.13.2061
    [47]
    H. Huang, W. He, J. Wang, L. Zhang, and Q. Fu, “An all servo-driven bird-like flapping-wing aerial robot capable of autonomous flight,” IEEE/ASME Trans. Mechatronics, DOI: 10.1109/TMECH.2022.3182418, 2022.
    [48]
    A. E. Holness, H. A. Bruck, and S. K. Gupta, “Characterizing and modeling the enhancement of lift and payload capacity resulting from thrust augmentation in a propeller-assisted flapping wing air vehicle,” Int. J. Micro Air Veh., vol. 10, no. 1, pp. 50–69, 2018. doi: 10.1177/1756829317734836
    [49]
    S. Shkarayev, D. Silin, G. Abate, and R. Albertani, “Aerodynamics of cambered membrane flapping wings,” in Proc. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2010, p. 58.
    [50]
    W. Shyy, H. Aono, S. Chimakurthi, Trizila, C.-K. Kang, C. Cesnik, and H. Liu, “Recent progress in flapping wing aerodynamics and aeroelasticity,” Prog. Aerosp. Sci., vol. 46, no. 7, pp. 284–327, 2010. doi: 10.1016/j.paerosci.2010.01.001
    [51]
    C. Morimoto and R. Chellappa, “Evaluation of image stabilization algorithms,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., vol. 5, 1998, pp. 2789–2792.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(3)

    Article Metrics

    Article views (428) PDF downloads(76) Cited by()

    Highlights

    • This paper provides a new design and control method for flapping-wing robots and expands their potential application scenarios
    • Development of a servo-driven flapping-wing robot with independently controlled wings, which enables it to glide like a bird
    • A camber structure and a dihedral angle adjustment mechanism are introduced into the airfoil design and motion control of the wings, which is proved an effective way to improve the gliding performance of the flapping-wing robot
    • A vision-based airdrop experiment has been successfully implemented on the developed robot, which is the first demonstration of a flapping-wing robot conducting an outdoor airdrop mission

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return