A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 9 Issue 11
Nov.  2022

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
S. P. Wang, X. C. Lin, Z. H. Fang, S. D. Du, and G. B. Xiao, “Contrastive consensus graph learning for multi-view clustering,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 11, pp. 2027–2030, Nov. 2022. doi: 10.1109/JAS.2022.105959
Citation: S. P. Wang, X. C. Lin, Z. H. Fang, S. D. Du, and G. B. Xiao, “Contrastive consensus graph learning for multi-view clustering,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 11, pp. 2027–2030, Nov. 2022. doi: 10.1109/JAS.2022.105959

Contrastive Consensus Graph Learning for Multi-View Clustering

doi: 10.1109/JAS.2022.105959
More Information
  • loading
  • [1]
    T. Zhou, M. Chen, and J. Zou, “Reinforcement learning based data fusion method for multi-sensors,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 6, pp. 1489–1497, 2020. doi: 10.1109/JAS.2020.1003180
    [2]
    Y. Wang, Z. Zhang, and Y. Lin, “Multi-cluster feature selection based on isometric mapping,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 3, pp. 570–572, 2021.
    [3]
    F. Nie, J. Li, and X. Li, “Self-weighted multiview clustering with multiple graphs,” in Proc. Int. Joint Conf. Artificial Intelligence, 2017, pp. 2564–2570.
    [4]
    S. Wang, Z. Chen, S. Du, and Z. Lin, “Learning deep sparse regularizers with applications to multi-view clustering and semi-supervised classification,” IEEE Trans. Pattern Analysis and Machine Intelligence, pp. 1–14, 2021, DOI: 10.1109/TPAMI.2021.3082632.
    [5]
    S. Du, Z. Liu, Z. Chen, W. Yang, and S. Wang, “Differentiable bi-sparse multi-view co-clustering,” IEEE Trans. Signal Processing, vol. 69, pp. 4623–4636, 2021. doi: 10.1109/TSP.2021.3101979
    [6]
    Z. Li, C. Tang, X. Liu, X. Zheng, G. Yue, W. Zhang, and E. Zhu, “Consensus graph learning for multi-view clustering,” IEEE Trans. Multimedia, pp. 1–12, 2021, DOI: 10.1109/TMM.2021.3081930.
    [7]
    H. Wang, Y. Yang, and B. Liu, “GMC: Graph-based multi-view clustering,” IEEE Trans. Knowledge and Data Engineering, vol. 32, no. 6, pp. 1116–1129, 2019.
    [8]
    C. Tang, X. Zhu, X. Liu, M. Li, Wa ng, C. Zhang, and L. Wang, “Learning a joint affinity graph for multiview subspace clustering,” IEEE Trans. Multimedia, vol. 21, no. 7, pp. 1724–1736, 2018.
    [9]
    K. Zhan, F. Nie, J. Wang, and Y. Yang, “Multiview consensus graph clustering,” IEEE Trans. Image Processing, vol. 28, no. 3, pp. 1261–1270, 2019. doi: 10.1109/TIP.2018.2877335
    [10]
    A. Benton, H. Khayrallah, B. Gujral, D. A. Reisinger, S. Zhang, and R. Arora, “Deep generalized canonical correlation analysis,” in Proc. Workshop Representation Learning for NLP, 2019, pp. 1–6.
    [11]
    H. Zhao, Z. Ding, and Y. Fu, “Multi-view clustering via deep matrix factorization,” in Proc. AAAI Conf. Artificial Intelligence, 2017, pp. 2921–2927.
    [12]
    Z. Huang, J. T. Zhou, X. Peng, C. Zhang, H. Zhu, and J. Lv, “Multi-view spectral clustering network,” in Proc. Int. Joint Conf. Artificial Intelligence, 2019, pp. 2563–2569.
    [13]
    Y. Li, P. Hu, Z. Liu, D. Peng, J. T. Zhou, and X. Peng, “Contrastive clustering,” in Proc. AAAI Conf. Artificial Intelligence, 2021, pp. 8547–8555.
    [14]
    H. Zhong, J. Wu, C. Chen, J. Huang, M. Deng, L. Nie, Z. Lin, and X.-S. Hua, “Graph contrastive clustering,” in Proc. IEEE/CVF Int. Conf. Computer Vision, 2021, pp. 9224–9233.
    [15]
    Y. Lin, Y. Gou, Z. Liu, B. Li, J. Lv, and X. Peng, “COMPLETER: Incomplete multi-view clustering via contrastive prediction,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2021, pp. 11174–11183.
    [16]
    C. Zhang, H. Fu, J. Wang, W. Li, X. Cao, and Q. Hu, “Tensorized multi-view subspace representation learning,” Int. J. Computer Vision, vol. 128, no. 8, pp. 2344–2361, 2020.
    [17]
    Z. Zhang, L. Liu, F. Shen, H. T. Shen, and L. Shao, “Binary multi-view clustering,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 41, no. 7, pp. 1774–1782, 2019. doi: 10.1109/TPAMI.2018.2847335

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(2)

    Article Metrics

    Article views (558) PDF downloads(78) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return