A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 9 Issue 11
Nov.  2022

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
G. Cheng, Z. F. Shao, J. M. Wang, X. Huang, and C. Y. Dang, “Dual-branch multi-level feature aggregation network for pansharpening,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 11, pp. 2023–2026, Nov. 2022. doi: 10.1109/JAS.2022.105956
Citation: G. Cheng, Z. F. Shao, J. M. Wang, X. Huang, and C. Y. Dang, “Dual-branch multi-level feature aggregation network for pansharpening,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 11, pp. 2023–2026, Nov. 2022. doi: 10.1109/JAS.2022.105956

Dual-Branch Multi-Level Feature Aggregation Network for Pansharpening

doi: 10.1109/JAS.2022.105956
More Information
  • loading
  • [1]
    H. Shen, X. Meng, and L. Zhang, “An integrated framework for the spatio-temporal-spectral fusion of remote sensing images,” IEEE Trans. Geoscience and Remote Sensing, vol. 54, no. 12, pp. 7135–7148, Dec. 2016. doi: 10.1109/TGRS.2016.2596290
    [2]
    A. R. Gillespie, A. B. Kahle, and R. E. Walker, “Color enhancement of highly correlated images. II. Channel ratio and “chromaticity” transformation techniques,” Remote Sensing Environment, vol. 22, no. 3, pp. 343–365, Aug. 1987. doi: 10.1016/0034-4257(87)90088-5
    [3]
    B. Aiazzi, L. Alparone, S. Baronti, A. Garzelli, and M. Selva, “MTF-tailored multiscale fusion of high-resolution MS and PAN imagery,” Photogrammetric Engineering &Remote Sensing, vol. 72, no. 5, pp. 591–596, 2006.
    [4]
    S. A. Valizadeh and H. Ghassemian, “Remote sensing image fusion using combining IHS and Curvelet transform,” in Proc. 6th Int. Symposium Telecomm., Nov. 2012, pp. 1184−1189.
    [5]
    B. Xiao, B. Xu, X. Bi, and W. Li, “Global-feature encoding U-Net (GEU-Net) for multi-focus image fusion,” IEEE Trans. Image Processing, vol. 30, pp. 163–175, 2020.
    [6]
    G. Masi, D. Cozzolino, L. Verdoliva, and G. Scarpa, “Pansharpening by convolutional neural networks,” Remote Sensing, vol. 8, no. 7, p. 594, Jul. 2016.
    [7]
    Q. Yuan, Y. Wei, X. Meng, H. Shen, and L. Zhang, “A multiscale and multidepth convolutional neural network for remote sensing imagery Pan-Sharpening,” IEEE J. Selected Topics Applied Earth Observations and Remote Sensing, vol. 11, no. 3, pp. 978–989, Mar. 2018. doi: 10.1109/JSTARS.2018.2794888
    [8]
    J. Ma, W. Yu, C. Chen, P. Liang, X. Guo, and J. Jiang, “PAN-GAN: An unsupervised PAN-sharpening method for remote sensing image fusion,” Information Fusion, vol. 62, pp. 110–120, 2020. doi: 10.1016/j.inffus.2020.04.006
    [9]
    H. Zhang and J. Ma, “GTP-PNet: A residual learning network based on gradient transformation prior for pansharpening,” ISPRS J. Photogrammetry and Remote Sensing, vol. 172, pp. 223–239, 2021. doi: 10.1016/j.isprsjprs.2020.12.014
    [10]
    S. Xu, J. Zhang, Z. Zhao, K. Sun, J. Liu, and C. Zhang, “Deep gradient projection networks for PAN-sharpening,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, 2021, pp. 1366–1375.
    [11]
    J. Liu, W. Zhang, Y. Tang, J. Tang, and G. Wu, “Residual feature aggregation network for image super-resolution,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, 2020, pp. 2359–2368.
    [12]
    Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu, “Image super-resolution using very deep residual channel attention networks,” in Proc. European Conf. Computer Vision, 2018, pp. 286–301.
    [13]
    S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “CBAM: Convolutional block attention module,” in Proc. European Conf. Computer Vision, 2018, pp. 3–19.
    [14]
    L. Wald, T. Ranchin, and M. Mangolini, “Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images,” Photogrammetric Engineering and Remote Sensing, vol. 63, no. 6, pp. 691–699, 1997.
    [15]
    M. Jiang, H. Shen, J. Li, Q. Yuan, and L. Zhang, “A differential information residual convolutional neural network for pansharpening,” ISPRS J. Photogrammetry and Remote Sensing, vol. 163, pp. 257–271, 2020. doi: 10.1016/j.isprsjprs.2020.03.006
    [16]
    Y. Wang, L.-J. Deng, T.-J. Zhang, and X. Wu, “SS-Conv: Explicit spectral-to-spatial convolution for pansharpening,” in Proc. 29th ACM Int. Conf. Multimedia, 2021, pp. 4472–4480.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (315) PDF downloads(51) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return