IEEE/CAA Journal of Automatica Sinica
Citation: | G. Cheng, Z. F. Shao, J. M. Wang, X. Huang, and C. Y. Dang, “Dual-branch multi-level feature aggregation network for pansharpening,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 11, pp. 2023–2026, Nov. 2022. doi: 10.1109/JAS.2022.105956 |
[1] |
H. Shen, X. Meng, and L. Zhang, “An integrated framework for the spatio-temporal-spectral fusion of remote sensing images,” IEEE Trans. Geoscience and Remote Sensing, vol. 54, no. 12, pp. 7135–7148, Dec. 2016. doi: 10.1109/TGRS.2016.2596290
|
[2] |
A. R. Gillespie, A. B. Kahle, and R. E. Walker, “Color enhancement of highly correlated images. II. Channel ratio and “chromaticity” transformation techniques,” Remote Sensing Environment, vol. 22, no. 3, pp. 343–365, Aug. 1987. doi: 10.1016/0034-4257(87)90088-5
|
[3] |
B. Aiazzi, L. Alparone, S. Baronti, A. Garzelli, and M. Selva, “MTF-tailored multiscale fusion of high-resolution MS and PAN imagery,” Photogrammetric Engineering &Remote Sensing, vol. 72, no. 5, pp. 591–596, 2006.
|
[4] |
S. A. Valizadeh and H. Ghassemian, “Remote sensing image fusion using combining IHS and Curvelet transform,” in Proc. 6th Int. Symposium Telecomm., Nov. 2012, pp. 1184−1189.
|
[5] |
B. Xiao, B. Xu, X. Bi, and W. Li, “Global-feature encoding U-Net (GEU-Net) for multi-focus image fusion,” IEEE Trans. Image Processing, vol. 30, pp. 163–175, 2020.
|
[6] |
G. Masi, D. Cozzolino, L. Verdoliva, and G. Scarpa, “Pansharpening by convolutional neural networks,” Remote Sensing, vol. 8, no. 7, p. 594, Jul. 2016.
|
[7] |
Q. Yuan, Y. Wei, X. Meng, H. Shen, and L. Zhang, “A multiscale and multidepth convolutional neural network for remote sensing imagery Pan-Sharpening,” IEEE J. Selected Topics Applied Earth Observations and Remote Sensing, vol. 11, no. 3, pp. 978–989, Mar. 2018. doi: 10.1109/JSTARS.2018.2794888
|
[8] |
J. Ma, W. Yu, C. Chen, P. Liang, X. Guo, and J. Jiang, “PAN-GAN: An unsupervised PAN-sharpening method for remote sensing image fusion,” Information Fusion, vol. 62, pp. 110–120, 2020. doi: 10.1016/j.inffus.2020.04.006
|
[9] |
H. Zhang and J. Ma, “GTP-PNet: A residual learning network based on gradient transformation prior for pansharpening,” ISPRS J. Photogrammetry and Remote Sensing, vol. 172, pp. 223–239, 2021. doi: 10.1016/j.isprsjprs.2020.12.014
|
[10] |
S. Xu, J. Zhang, Z. Zhao, K. Sun, J. Liu, and C. Zhang, “Deep gradient projection networks for PAN-sharpening,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, 2021, pp. 1366–1375.
|
[11] |
J. Liu, W. Zhang, Y. Tang, J. Tang, and G. Wu, “Residual feature aggregation network for image super-resolution,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, 2020, pp. 2359–2368.
|
[12] |
Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu, “Image super-resolution using very deep residual channel attention networks,” in Proc. European Conf. Computer Vision, 2018, pp. 286–301.
|
[13] |
S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “CBAM: Convolutional block attention module,” in Proc. European Conf. Computer Vision, 2018, pp. 3–19.
|
[14] |
L. Wald, T. Ranchin, and M. Mangolini, “Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images,” Photogrammetric Engineering and Remote Sensing, vol. 63, no. 6, pp. 691–699, 1997.
|
[15] |
M. Jiang, H. Shen, J. Li, Q. Yuan, and L. Zhang, “A differential information residual convolutional neural network for pansharpening,” ISPRS J. Photogrammetry and Remote Sensing, vol. 163, pp. 257–271, 2020. doi: 10.1016/j.isprsjprs.2020.03.006
|
[16] |
Y. Wang, L.-J. Deng, T.-J. Zhang, and X. Wu, “SS-Conv: Explicit spectral-to-spatial convolution for pansharpening,” in Proc. 29th ACM Int. Conf. Multimedia, 2021, pp. 4472–4480.
|