IEEE/CAA Journal of Automatica Sinica
Citation: | C. Trapiello and V. Puig, “A zonotopic-based watermarking design to detect replay attacks,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 11, pp. 1924–1938, Nov. 2022. doi: 10.1109/JAS.2022.105944 |
[1] |
X.-M. Zhang, Q.-L. Han, X. Ge, D. Ding, L. Ding, D. Yue, and C. Peng, “Networked control systems: A survey of trends and techniques,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 1–17, 2019.
|
[2] |
R. Langner, “Stuxnet: Dissecting a cyberwarfare weapon,” IEEE Security &Privacy, vol. 9, no. 3, pp. 49–51, 2011.
|
[3] |
A. A. Cardenas, S. Amin, and S. Sastry, “Secure control: Towards survivable cyber-physical systems,” in Proc. 28th IEEE Int. Conf. Distributed Computing Systems Workshops, 2008, pp. 495–500.
|
[4] |
A. A. Cárdenas, S. Amin, and S. Sastry, “Research challenges for the security of control systems.” in HotSec, 2008.
|
[5] |
A. Teixeira, I. Shames, H. Sandberg, and K. H. Johansson, “A secure control framework for resource-limited adversaries,” Automatica, vol. 51, pp. 135–148, 2015. doi: 10.1016/j.automatica.2014.10.067
|
[6] |
F. Pasqualetti, F. Dörfler, and F. Bullo, “Attack detection and identification in cyber-physical systems,” IEEE Trans. Automatic Control, vol. 58, no. 11, pp. 2715–2729, 2013. doi: 10.1109/TAC.2013.2266831
|
[7] |
H. S. Sánchez, D. Rotondo, T. Escobet, V. Puig, and J. Quevedo, “Bibliographical review on cyber attacks from a control oriented perspective,” Annual Reviews in Control, 2019.
|
[8] |
D. Ding, Q.-L. Han, X. Ge, and J. Wang, “Secure state estimation and control of cyber-physical systems: A survey,” IEEE Trans. Systems,Man,and Cybernetics: Systems, vol. 51, no. 1, pp. 176–190, 2020.
|
[9] |
M. Zhu and S. Martinez, “On the performance analysis of resilient networked control systems under replay attacks,” IEEE Trans. Automatic Control, vol. 59, no. 3, pp. 804–808, 2013.
|
[10] |
G. Franzè, F. Tedesco, and D. Famularo, “Resilience against replay attacks: A distributed model predictive control scheme for networked multi-agent systems,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 3, pp. 628–640, 2020.
|
[11] |
Y. Mo and B. Sinopoli, “Secure control against replay attacks,” in Proc. IEEE 47th Annual Allerton Conf. Communication, Control, and Computing, 2009, pp. 911–918.
|
[12] |
Y. Mo, S. Weerakkody, and B. Sinopoli, “Physical authentication of control systems: Designing watermarked control inputs to detect counterfeit sensor outputs,” IEEE Control Systems Magazine, vol. 35, no. 1, pp. 93–109, 2015. doi: 10.1109/MCS.2014.2364724
|
[13] |
H. Liu, Y. Mo, and K. H. Johansson, “Active detection against replay attack: A survey on watermark design for cyber-physical systems,” in Safety, Security and Privacy for Cyber-Physical Systems. Springer, 2021, pp. 145–171.
|
[14] |
R. M. Ferrari and A. M. Teixeira, “Detection and isolation of replay attacks through sensor watermarking,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 7363–7368, 2017. doi: 10.1016/j.ifacol.2017.08.1502
|
[15] |
R. M. Ferrari and A. M. Teixeira, “A switching multiplicative watermarking scheme for detection of stealthy cyber-attacks,” IEEE Trans. Automatic Control, 2020.
|
[16] |
B. Satchidanandan and P. R. Kumar, “Dynamic watermarking: Active defense of networked cyber-physical systems,” Proc. the IEEE, vol. 105, no. 2, pp. 219–240, 2016.
|
[17] |
H. Liu, Y. Mo, J. Yan, L. Xie, and K. H. Johansson, “An online approach to physical watermark design,” IEEE Trans. Automatic Control, vol. 65, no. 9, pp. 3895–3902, 2020. doi: 10.1109/TAC.2020.2971994
|
[18] |
C. Fang, Y. Qi, P. Cheng, and W. X. Zheng, “Optimal periodic watermarking schedule for replay attack detection in cyber–physical systems,” Automatica, vol. 112, p. 108698, 2020.
|
[19] |
F. Miao, M. Pajic, and G. J. Pappas, “Stochastic game approach for replay attack detection,” in Proc. 52nd IEEE Conf. Decision and Control, 2013, pp. 1854–1859.
|
[20] |
A. Khazraei, H. Kebriaei, and F. R. Salmasi, “A new watermarking approach for replay attack detection in lqg systems,” in Proc. IEEE 56th Annu. Conf. Decision and Control, 2017, pp. 5143–5148.
|
[21] |
C. Combastel, “An extended zonotopic and Gaussian Kalman filter (EZGKF) merging set-membership and stochastic paradigms: Toward nonlinear filtering and fault detection,” Annual Reviews in Control, vol. 42, pp. 232–243, 2016. doi: 10.1016/j.arcontrol.2016.07.002
|
[22] |
F. Schweppe, “Recursive state estimation: Unknown but bounded errors and system inputs,” IEEE Trans. Automatic Control, vol. 13, no. 1, pp. 22–28, 1968. doi: 10.1109/TAC.1968.1098790
|
[23] |
V. Puig, “Fault diagnosis and fault tolerant control using set-membership approaches: Application to real case studies,” Int. Journal of Applied Mathematics and Computer Science, vol. 20, no. 4, pp. 619–635, 2010.
|
[24] |
H. Song, P. Shi, C.-C. Lim, W.-A. Zhang, and L. Yu, “Set-membership estimation for complex networks subject to linear and nonlinear bounded attacks,” IEEE Trans. Neural Networks and Learning Systems, vol. 31, no. 1, pp. 163–173, 2019.
|
[25] |
Y. Zhang, Y. Zhu, and Q. Fan, “A novel set-membership estimation approach for preserving security in networked control systems under deception attacks,” Neurocomputing, vol. 400, pp. 440–449, 2020. doi: 10.1016/j.neucom.2019.04.082
|
[26] |
C. Trapiello, V. Puig, and D. Rotondo, “A zonotopic set-invariance analysis of replay attacks affecting the supervisory layer,” Systems & Control Letters, vol. 157, p. 105056, 2021.
|
[27] |
C. Combastel, “Zonotopes and Kalman observers: Gain optimality under distinct uncertainty paradigms and robust convergence,” Automatica, vol. 55, pp. 265–273, 2015. doi: 10.1016/j.automatica.2015.03.008
|
[28] |
D. Bertsekas, Dynamic programming and optimal control: Volume I. Athena scientific, 2012, vol. 1.
|
[29] |
W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control. Springer Science & Business Media, 2012, vol. 1.
|
[30] |
B. Z. Temoçin and G.-W. Weber, “Optimal control of stochastic hybrid system with jumps: A numerical approximation,” Journal of Computational and Applied Mathematics, vol. 259, pp. 443–451, 2014. doi: 10.1016/j.cam.2013.10.021
|
[31] |
E. Savku and G.-W. Weber, “A stochastic maximum principle for a Markov regime-switching jump-diffusion model with delay and an application to finance,” Journal of Optimization Theory and Applications, vol. 179, no. 2, pp. 696–721, 2018. doi: 10.1007/s10957-017-1159-3
|
[32] |
T. Başar and P. Bernhard, H-Infinity Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach. Springer Science & Business Media, 2008.
|
[33] |
R. B. Vinter, “Minimax optimal control,” SIAM Journal on Control and Optimization, vol. 44, no. 3, pp. 939–968, 2005. doi: 10.1137/S0363012902415244
|
[34] |
J. Löfberg, Minimax Approaches to Robust Model Predictive Control. Linköping University Electronic Press, 2003, vol. 812.
|
[35] |
C. Trapiello and V. Puig, “Replay attack detection using a zonotopic KF and LQ approach,” in Proc. IEEE Int. Conf. Systems, Man, and Cybernetics, 2020, pp. 3117–3122.
|
[36] |
I. Kolmanovsky and E. G. Gilbert, “Theory and computation of disturbance invariant sets for discrete-time linear systems,” Mathematical Problems in Engineering, vol. 4, no. 4, pp. 317–367, 1998. doi: 10.1155/S1024123X98000866
|
[37] |
F. Blanchini and S. Miani, Set-Theoretic Methods in Control. Springer, 2008.
|
[38] |
C. Combastel, “A state bounding observer for uncertain non-linear continuous-time systems based on zonotopes,” in Proc. 44th IEEE Conf. Decision and Control, 2005, pp. 7228–7234.
|
[39] |
T. Alamo, J. M. Bravo, and E. F. Camacho, “Guaranteed state estimation by zonotopes,” Automatica, vol. 41, no. 6, pp. 1035–1043, 2005. doi: 10.1016/j.automatica.2004.12.008
|
[40] |
M. Pourasghar, V. Puig, and C. Ocampo-Martinez, “Interval observer versus set-membership approaches for fault detection in uncertain systems using zonotopes,” Int. Journal of Robust and Nonlinear Control, vol. 29, no. 10, pp. 2819–2843, 2019. doi: 10.1002/rnc.4523
|
[41] |
Y. Wang, V. Puig, and G. Cembrano, “Set-membership approach and Kalman observer based on zonotopes for discrete-time descriptor systems,” Automatica, vol. 93, pp. 435–443, 2018. doi: 10.1016/j.automatica.2018.03.082
|
[42] |
J. Wang, Y. Shi, M. Zhou, Y. Wang, and V. Puig, “Active fault detection based on set-membership approach for uncertain discrete-time systems,” Int. Journal of Robust and Nonlinear Control, vol. 30, no. 14, pp. 5322–5340, 2020. doi: 10.1002/rnc.5036
|
[43] |
R. R. Bitmead and M. Gevers, “Riccati difference and differential equations: Convergence, monotonicity and stability,” in The Riccati Equation. Springer, 1991, pp. 263–291.
|
[44] |
D. Q. Mayne and W. Schroeder, “Robust time-optimal control of constrained linear systems,” Automatica, vol. 33, no. 12, pp. 2103–2118, 1997. doi: 10.1016/S0005-1098(97)00157-X
|
[45] |
S. Olaru, J. A. De Doná, M. M. Seron, and F. Stoican, “Positive invariant sets for fault tolerant multisensor control schemes,” Int. Journal of Control, vol. 83, no. 12, pp. 2622–2640, 2010. doi: 10.1080/00207179.2010.535215
|
[46] |
S. V. Rakovic, E. C. Kerrigan, K. I. Kouramas, and D. Q. Mayne, “Invariant approximations of the minimal robust positively invariant set,” IEEE Trans. Automatic Control, vol. 50, no. 3, pp. 406–410, 2005. doi: 10.1109/TAC.2005.843854
|
[47] |
K. H. Johansson, “The quadruple-tank process : A multivariable laboratory process with an adjustable zero,” IEEE Trans. Control Syst. Technol., vol. 8, no. 3, pp. 456–465, 2000. doi: 10.1109/87.845876
|
[48] |
I. ILOG, “Cplex optimizer 12.8,” 2018.
|
[49] |
J. D. Hamilton, Time Series Analysis. Princeton university press, 2020.
|
[50] |
M. M. Seron and J. A. De Doná, “Robust fault estimation and compensation for LPV systems under actuator and sensor faults,” Automatica, vol. 52, pp. 294–301, 2015. doi: 10.1016/j.automatica.2014.12.003
|
[51] |
G. H. Golub and C. F. Van Loan, Matrix Computations. JHU press, 2013, vol. 3.
|
[52] |
M. Althoff, O. Stursberg, and M. Buss, “Computing reachable sets of hybrid systems using a combination of zonotopes and polytopes,” Nonlinear Analysis: Hybrid Systems, vol. 4, no. 2, pp. 233–249, 2010. doi: 10.1016/j.nahs.2009.03.009
|