IEEE/CAA Journal of Automatica Sinica
Citation: | N. Yang, B. J. Xia, Z. Han, and T. R. Wang, “A domain-guided model for facial cartoonlization,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 10, pp. 1886–1888, Oct. 2022. doi: 10.1109/JAS.2022.105887 |
[1] |
J. Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using cycle-consistent adversarial networks,” in Proc. IEEE Int. Conf. Comput. Vis., 2017, pp. 2242–2251.
|
[2] |
S. Chen, Y. Tian, F. Wen, Y.-Q. Xu, and X. Tang, “Easytoon: An easy and quick tool to personalize a cartoon storyboard using family photo album,” in Proc. 16th ACM Int. Conf. Multimed., 2008, pp. 499–508.
|
[3] |
Y. Chen, Y.-K. Lai, and Y.-J. Liu, “CartoonGAN: Generative adversarial networks for photo cartoonization,” in Proc. IEEE Conf. Comput. Vis. pattern Recognit., 2018, pp. 9465–9474.
|
[4] |
H. Li, G. Liu, and K. N. Ngan, “Guided face cartoon synthesis,” IEEE Trans. Multimed., vol. 13, no. 6, pp. 1230–1239, 2011. doi: 10.1109/TMM.2011.2168814
|
[5] |
Y. Zhang, W. Dong, O. Deussen, F. Huang, K. Li, and B.-G. Hu, “Data-driven face cartoon stylization,” in Proc. SIGGRAPH Asia Tech. Briefs, 2014, pp. 1–4.
|
[6] |
M. Yang, S. Lin, P. Luo, L. Lin, and H. Chao, “Semantics-driven portrait cartoon stylization,” in Proc. IEEE Int. Conf. Image Process, 2010, pp. 1805–1808.
|
[7] |
J. Gong, Y. Hold-Geoffroy, and J. Lu, “Autotoon: Automatic geometric warping for face cartoon generation,” in Proc. IEEE/CVF Winter Conf. Appl. Comput. Vis., 2020, pp. 360–369.
|
[8] |
K. Liu, Z. Ye, H. Guo, D. Cao, L. Chen, and F. Y. Wang, “FISS Gan: A generative adversarial network for foggy image semantic segmentation,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 8, pp. 1428–1439, 2021. doi: 10.1109/JAS.2021.1004057
|
[9] |
J. Li, Y. Tao, and T. Cai, “Predicting lung cancers using epidemiological data: A generative-discriminative framework,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 5, pp. 1067–1078, 2021. doi: 10.1109/JAS.2021.1003910
|
[10] |
J. Kim, M. Kim, H. Kang, and K. Lee, “U-GAT-IT: Unsupervised generative attentional networks with adaptive layer-instance normalization for image-to-image translation,” arXiv preprint arXiv: 1907.10830, 2019.
|
[11] |
Minivision-AI, “Photo2cartoon,” [Online]. Available: https://github.com/minivision-ai/photo2cartoon. Accessed: Jun. 2022.
|
[12] |
B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning deep features for discriminative localization,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 2016, pp. 2921–2929.
|
[13] |
N. Zhuang and C. Yang, “Few-shot knowledge transfer for fine-grained cartoon face generation,” in Proc. IEEE Int. Conf. Multimed. Expo, 2021, pp. 1–6.
|
[14] |
K. Ding, K. Ma, S. Wang, and E. P. Simoncelli, “Image quality assessment: Unifying structure and texture similarity,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 5, pp. 2567–2581, May 2022. doi: 10.1109/TPAMI.2020.3045810
|
[15] |
L. Zhang, L. Zhang, X. Mou, and D. Zhang, “FSIM: A feature similarity index for image quality assessment,” IEEE Trans. Image Process., vol. 20, no. 8, pp. 2378–2386, 2011. doi: 10.1109/TIP.2011.2109730
|
[16] |
B. Zhang, P. V. Sander, and A. Bermak, “Gradient magnitude similarity deviation on multiple scales for color image quality assessment,” in Proc. ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process, 2017, pp. 1253–1257.
|
[17] |
Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural similarity for image quality assessment,” in Proc. 37th Asilomar Conf. Signals, Syst. Comput., 2013, vol. 2, pp. 1398–1402.
|
[18] |
Z. Wang, A. C. Bovik, H. R. Sheikh, and E. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process., vol. 13, no. 4, pp. 600–612, 2004. doi: 10.1109/TIP.2003.819861
|
[19] |
R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable effectiveness of deep features as a perceptual metric,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 2018, pp. 586–595.
|